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Abstract—With deep learning, millimeter-wave radar-based
gesture recognition applications have achieved satisfactory re-
sults. However, most existing approaches highly rely on high-
quality labeled data, and they suffer from severe over-fitting
when labeled data are scarce. To end this, we present RadarAE,
a novel representation learning framework for radar sensing
applications. RadarAE learns sophisticated representations from
massive low-cost unlabeled radar data, which enables accurate
gesture recognition with few labeled data. To achieve this goal, we
first meticulously observe the characteristics of raw radar data
and extract an effective feature, Spatio-Temporal Motion Map
(STMM). Then we borrow the key principle of Masked Autoen-
coders (MAE), a self-supervised learning technique for images,
and propose an MAE-like model to learn useful representations
from STMM. To adapt RadarAE to radar sensing applications,
we present a series of customization techniques, including data
augmentation, optimized model structure, and adaptive pre-
training method. With the learned high-level representations,
gesture recognition models can achieve superior performance in
few-shot scenarios. Experiment results show that our model can
achieve 79.1%, 92.1%, 97.8%, and 99.5% recognition accuracy
in the 1, 2, 4, and 8-shot scenarios, respectively, where x-shot
refers to the number of labeled samples for each gesture type.
The source codes and dataset are made publicly available1.

Index Terms—Human-Computer Interaction, Millimeter-Wave
Radar, Gesture recognition, Self-Supervised Learning

I. INTRODUCTION

Gesture recognition is a critical technology for many
Human-Computer Interaction (HCI) applications. Traditional
gesture recognition solutions are mainly based on cameras
[1], [2], wearable sensors [3]–[5]. Although camera-based
solutions can obtain good performance, images are likely to
contain sensitive information, leading to privacy concerns [6].
Wearable sensor-based technologies require users to wear or
hold certain sensors, which are not user-friendly. In compar-
ison, millimeter-wave radar-based methods facilitate device-
free sensing with no privacy concern and have attracted much
attention [7]–[12].

With the development of deep learning, many radar-based
works utilize deep learning models to process data [7]–[12]
and achieve high performance in certain cases. However, most
of these methods require to collect and annotate a large number
of training data, which is very costly. To this end, we adopt the
key principle of self-supervised learning [13]–[16] and propose
a novel representations learning framework, RadarAE. Instead

1https://github.com/Ela-Boska/RadarAE

of collecting large amounts of labeled data, RadarAE learns
to extract high-level representations from radar data through a
pre-training task performed on an unlabeled dataset. Compared
with labeled data, unlabeled data are much easier to collect
because users are not constrained to perform specific gestures
during the collection process. In addition, millimeter-wave
radars are easy to deploy and do not raise privacy concerns,
making them perfect for collecting massive unlabeled data. For
instance, we can install the radar in a gym to collect unlabeled
data for workout activity recognition automatically when peo-
ple do exercises. The downstream gesture classifier models can
directly take the extracted representations as input to estimate
the final results and achieve impressive performance with a
small number of labeled data.

To introduce the principle of self-supervised learning into
radar sensing, the first challenge comes from the huge data
discrepancy between radar data and other data types adopted
by traditional self-supervised learning approaches. Existing
self-supervised learning techniques focus on processing text,
videos, images, etc. [13]–[16], which are informative and
embedded with abundant contextual relations. Different from
them, many commercial radars devices transmit frequency
modulated continuous wave (FMCW) signals, from which
we can obtain Range-Doppler Map (RDM) and Range-Angle
Map (RAM) that reveal reflectors’ positions and velocities.
However, RDM and RAM are information-sparse and lack
temporal relations, which are different from text or images.
As a result, existing self-supervised approaches can not be
applied to radar data.

To address this challenge, we rethink the input of radar
sensing models and propose a new feature based on RDM
and RAM. By locating the user and cropping the user-related
part from RDM and RAM, we effectively eliminate position-
related patterns of radar data. Subsequently, we aggregate
the information about velocities and directions of reflectors
embedded in sequences of cropped RDM and RAM to form
an informative and compact feature, Spatio-Temporal Motion
Map (STMM), which is an image-like 3-D tensor.

Our framework’s design is therefore motivated by learning
useful representations from STMM. By meticulously observ-
ing the properties of STMM, we find that STMM resembles
image data because it carries rich contextual relations along
the time and distance domain. To this end, we treat STMM as
images and borrow the key principle of MAE [14] to process



STMM, which is an emerging self-supervised learning model
in computer vision. However, due to the data discrepancy,
the original MAE model fails to work with STMM. This
paper thus devises a set of techniques to adapt RadarAE to
radar sensing applications. Specifically, we adjust the pre-
training strategy (see Section III-C1) to make full use of
spatio-temporal relations in STMM. In addition, we propose a
lightweight model structure together with the weight-sharing
mechanism, which eases over-fitting caused by limited training
data. Furthermore, we design an efficient data augmentation
approach to enrich the diversity of the collected dataset without
destructing the physical meaning of STMM.

To show the effectiveness of RadarAE in enhancing the
performance of radar sensing models with few labeled sam-
ples, we collect a dataset for the gesture recognition task
and conduct extensive experiments. RadarAE achieves 79.1%
recognition accuracy in the one-shot scenario and consistently
outperforms other supervised and self-supervised learning ap-
proaches in all few-shot scenarios. Our main contributions are
summarized as follows:

1) To the best of our knowledge, RadarAE is the first
work that introduces the principle of self-supervised
learning into radar sensing. Compared with previous
works, RadarAE requires much less labeled data, which
is a concrete step toward practical radar-based gesture
recognition systems. In addition, the methodology of
RadarAE is also applicable in wireless sensing applica-
tions based on other signals embedded with rich spatio-
temporal features (e.g., Wi-Fi [17] , RFID [18] and
ultrasonic wave [19]).

2) We design a compact and informative feature STMM
from raw radar data and present a powerful representa-
tion learning framework based on STMM. Furthermore,
a series of improvements in pre-training strategy, model
structure, and data augmentation are proposed to make
RadarAE adapt to radar data.

3) We implement a prototype system of RadarAE and eval-
uate it with massive experiments. The results show that
the RadarAE-powered model significantly outperforms
state-of-the-art techniques. The source codes and dataset
are made available to the public.

II. BACKGROUND

A. Radar Data Processing

We implement RadaAE with IWR1642 from Texas Instru-
ments, a millimeter-wave radar that transmits FMCW signals.
The frequency of FMCW signals changes periodically, and
each period is defined as a chirp. For a single receiving
antenna, each frame contains multiple chirps. We can infer the
reflectors’ distances, radial velocities, and azimuths (defined in
Fig. 1a) by performing FFT over each chirp, chirps in a frame,
and frames of multiple receiving antennas [20], which are
called Range FFT, Doppler FFT, and Angle FFT in this paper,
respectively. By combining Range FFT and Doppler FFT, we
obtain the RDM which reflects the distances and velocities of
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Fig. 1: (a) The definition of the azimuth, radial velocity and
distance, which are denoted as θ, vradial and d, respectively.
(b) a RDM sample (c) a RAM sample.

reflectors. Similarly, we obtain RAM by performing Range
FFT and Angle FFT, which contains information on the
distances and directions of reflectors. The size of RDM and
RAM is [ND, NR] and [NA, NR] where ND, NA, and NR

represent the lengths of transformed axes after Doppler, Angle,
and Range FFT, respectively. In our case, ND, NA and NR

equal to 32, 32 and 60.
Fig. 1 illustrates two examples of RDM and RAM when the

user pulls the fist back. For RDM, x-axis (velocity axis) and
y-axis (distance axis) represent the radial velocity and the dis-
tance. When a reflector reflects the radar signal, it would raise
a response at the corresponding velocity index and distance
index in RDM. Similarly, the x-axis (angle axis) and y-axis
(distance axis) of RAM represent the azimuth and the distance.
A reflector would induce a response at the corresponding angle
index and distance index in RAM. For RDM and RAM, the
amplitude of the response represents the intensity of reflected
signals. Specifically, the angle index of i corresponds to the
azimuth of (i − NA/2)∆A, whereas the velocity index of
j corresponds to the radial velocity of (j − ND/2)∆V ; the
distance index of k corresponds to the distance of k∆R. The
angle resolution ∆A, velocity resolution ∆V and distance
resolution ∆R are some configurable parameters of the FFT.

In Fig. 1, we can distinguish the torso and the right fist
of the user. The right fist is on the right side of the torso
and has a positive radial velocity because it is being pulled
back. Although RDM and RAM contain information about
reflectors’ motion states and positions, the features of RDM
and RAM are very sparse.

B. Self-supervised Learning

Deep learning techniques have demonstrated their effec-
tiveness in numerous applications. However, establishing a
successful deep learning model depends on plenty of labeled
data. Some pioneer works [13]–[15] propose self-supervised
learning approaches to learn general representations from low-
cost unlabeled images, videos, and texts. These works suggest
that a wide variety of downstream tasks can benefit from the
learned representations. One common methodology of self-
supervised learning techniques is reconstructing a proportion
of the input from the other part, which enables generating
labels from data themselves. MAE [14] is an effective self-
supervised learning model processing images. It first sepa-
rates an image into a sequence of “patches”. Then it masks
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Fig. 2: RadarAE overview.

some patches and trains a deep learning model to recover
masked patches from the left ones. Compared with other self-
supervised learning techniques (e.g., BERT [13]), MAE is
capable of utilizing contextual relations along two dimensions,
which provide a feasible solution to extract the rich contextual
relations of radar data in space and time domains.

III. RADARAE DESIGN

A. Overview

Fig. 2 illustrates the overview of RadarAE. RadarAE con-
sists of two phases: the self-supervised learning and super-
vised learning phases. RadarAE first extracts the informative
image-like features (i.e., STMM), from raw data. In the self-
supervised learning phase, we mask a portion of STMM input
and feed them to a pre-training model composed of an encoder
and a decoder. The pre-training model is trained to reconstruct
the masked parts from the other parts. Through the reconstruc-
tion task, the encoder gains comprehensive understanding (i.e.,
rich spatio-temporal relations embedded in STMM) of STMM
and generates high-level representations from unlabeled data.

In the supervised learning phase, we make use of the pre-
trained RadarAE encoder to process labeled data. Then a
gesture classifier is trained to recognize gesture types based on
the extracted representations. By leveraging prior knowledge
learned in the self-supervised learning phase, the downstream
models (i.e. the gesture classifier) can achieve superior perfor-
mance with a small amount of labeled data.

B. Preprocessing

As shown in Fig. 1, RDM and RAM are pretty sparse that
most elements are close to zero, which carries little informa-
tion about user activities. Moreover, they do not contain the
essential temporal relations for gesture recognition. Driven by
this analysis, we propose a compact and informative feature,
STMM. We observe that the pixels with high values caused
by the user motion gather around the position of the target
user. Thus, we first find the distance and direction of the user
by selecting the location with the most significant response in
RAM. However, the response intensities within RAM fluctuate
significantly, leading to inconsistent results. Therefore, we
estimate the user position based on the average intensities of
the first Npre (i.e. 40) frames of RAM of a data sample:

iu = argmax
i

Npre∑
t=1

NR∑
j=1

RAM
(t)
i,j (1)
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Fig. 3: The procedures to extract RA and RV. (a) RDM;
(b) HRDM; (c) 100 frames of continuous RV; (d) RAM; (e)
HRAM; (f) 100 frames of continuous RA.

ju = argmax
j

Npre∑
t=1

NA∑
i=1

RAM
(t)
i,j (2)

Where iu and ju are the angle and distance index of the
target user. We then crop the user-related responses from the
original RDM and RAM via windows with the size of ND × Y
and WA × Y to obtain the human-centered RDM (HRDM)
and human-centered RAM (HRAM), as shown in Fig. 3. The
cropping area in RDM is {RDMi,j |j ∈ [ju−0.8Y, ju+0.2Y )}
and the cropping area in RAM is {RAMi,j |i ∈ [iu −
0.5WA, iu + 0.5WA), j ∈ [ju − 0.8Y, ju + 0.2Y )} where iu
and ju are the angle index and distance index of the user.
The WA and Y are two configurable parameters. The cropped
distance indices range from [ju − 0.8Y, ju + 0.2Y ) because
users make gestures with their hands in front of their body.
The HRDM and HRAM can adapt to different user locations
and avoid the noised responses induced by other objects.

Based on HRDM and HRAM, we compute the overall
velocity and azimuth at each distance index by aggregating
all corresponding velocities and azimuths. We name the two
processed features Range-wise Velocity (RV) and Range-wise
Angle (RA) in our paper, which are defined as follows:

RV
(t)
j =

∑ND

i=1 viHRDM
(t)
i,j

c1 +
∑ND

i=1 HRDM
(t)
i,j

(3)

RA
(t)
j =

∑WA

i=1 θiHRAM
(t)
i,j

c2 +
∑WA

i=1 HRAM
(t)
i,j

(4)

where RV , RA ∈ RY , and c1, c2 are two constants to ensure
that RVj and RAj are close to 0 when there is no reflector
at the distance index j (i.e.,

∑WA

i=1 HRAM
(t)
(i,j) → 0 and∑ND

i=1 HRDM
(t)
i,j → 0). vi and θi are the radial velocity with

velocity index of i and azimuth with angle index of i (with
respect to the target user), which are formulated as

vi = (i−ND/2)∆V, θi = (i−WA/2)∆A

We then concatenate RV and RA of T continuous frames
and create a feature with the size of T × Y × 2, namely
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Fig. 4: Workflow of self-supervised learning.

Spatio Temporal Motion Map (STMM). The three dimensions
of STMM represent the dimension of time, the dimension of
distance, and the dimension of RV and RA. If we interpret
STMM as an image with only two channels, its first and
second channel consists of T continuous frames of RV and
RA, as Fig. 3c and 3f show. If a sample contains l frames
(l < T ), we pad T − l frames with zeros to the first
dimension and have the unified size of STMM. Compared
with raw radar data, STMM integrates the information of both
velocities and azimuths at different times and distances, which
are more compact and beneficial to representation learning of
the follow-up models.

C. Self-Supervised Learning Phase

To learn the underlying patterns of radar data, we propose
to make full use of unlabeled data with a pre-training model.
Different from the text data which only contains temporal
relations, STMM is a 2D image-like feature embedded with
rich spatio-temporal relations. Thus, we treat STMM as images
and borrow the training approach of MAE [14]. As shown in
Fig. 4, some random patches of the input data are masked and
the encoder and decoder learn to reconstruct the masked data
from the visible ones. With such a reconstruction task, the
models are trained to capture the relations between the visible
patches at different times and distances.

1) Masking: First, STMM ∈ RT×Y×2 is divided into a
sequence of flattened patches X ∈ RNP×Hpatch where NP =
2TY/Hpatch, Hpatch = PT ×PY ×2 and PT ×PY represents
the patch size. After that, rmNP randomly selected patches
are masked where rm is called the masking ratio. In RadarAE,
we choose to mask a high proportion of patches to create a
challenging training task. The models can infer the missed

patches by simply copying visible patches if a small masking
ratio is used, which undermines the quality of learned features.
In contrast, the models are forced to learn the spatio-temporal
relations with a high masking ratio.

Since the STMM are different from images, we customize
the masking strategy to make it work better in our scenario.
Specifically, we reduce the patch size from 16×16 to 3×10 for
the following two reasons. First, the size of STMM (72× 20)
is much smaller than that of images (typically 224 × 224).
RadarAE would fail to learn the inter-patch correlations if
a large patch size is used as STMM is partitioned into few
patches. Second, as STMM depicts the movements of the
target user, the inter-time relations in STMM contain more
information than the inter-distance relations. Therefore, we set
the patch size along the time axis to be smaller than that along
the distance axis for better extraction of inter-time relations.

2) Pre-training Model: The structure of the pre-training
model is illustrated in Fig. 4. First, each patch is mapped
into He dimensions with a linear projection. subsequently,
positional encoding [21] with the size of Np × He is added
to the input sequence, which introduces information about the
patches’ positions in STMM. This is because the transformer
encoder layer has no prior knowledge about the position
of each patch. After that, the masked patches are directly
discarded. The processed features Z0 are formulated as:

Z0 = Discard(XW + PE), Z0 ∈ R(1−rm)Np×He

W ∈ RHpatch×He , PE ∈ RNp×He (5)

The processed features Z0 are subsequently fed into Lencoder

stacked transformer encoder layers [21]. The transformer en-
coder layer is composed of a multiheaded self-attention layer
(MSA) [21] and a MLP block. The MSA effectively extracts
the contextual relations of the input sequence with position
encoding. The MLP contains two fully-connected layers with
one GELU activation layer [22]. The output size of the MLP is
identical to He while the hidden size is 4He. Before the MSA
and MLP, we normalize the feature with Layer Normalization
(LN) [23]. In addition, a residual connection is appended after
each MSA and MLP. The processing of the l-th transformer
encoder layer can be expressed as:

al = MSA(LN(Zl−1)) + Zl−1 (6)

Zl = MLP(LN(al)) + al (7)

After the last transformer encoder layer, LN is applied to
produce the extracted representations y:

y = LN(ZLencoder
) (8)

3) Reconstruction: We utilize a decoder to reconstruct
masked STMM from the extracted representations. Different
from the encoder, the decoder replaces the discarded patches
with a learnable mask token (see Fig. 4). It contains Ldecoder

transformer encoder layers with embedding size Hd. If Hd ̸=
He, a linear projection is necessary before feeding the ex-
tracted representations into the decoder. After the transformer



Fig. 5: Some reconstruction results with data from the testing
set. We only show the first channel of STMM for illustration.
In each row, we plot the masked input (left), original input
(middle), and reconstructed input (right).

encoder layers, an MLP with a reshape operation outputs
the reconstructed STMM X ′ from the processed features.
To measure the difference between the missing patches and
reconstructed patches, we adopt the Mean Square Error (MSE)
function to calculate the pre-training loss:

loss = MSE(Select(X),Select(X ′)) (9)

where Select represents selecting the patches at the masked
positions as Fig. 4 shows.

Some reconstruction examples are given in Fig. 5. RadarAE
shows an impressive capacity for reconstructing masked
patches. Despite the fact that the majority of patches are
invisible for RadarAE, the reconstructed inputs have similar
patterns to the ground truth. These reconstruction results verify
that RadarAE develops a sophisticated understanding of radar
data via self-supervised learning.

D. Supervised Learning Phase

In the supervised learning phase, RadarAE utilizes the
learned encoder to facilitate gesture recognition. The work-
flow of supervised learning is demonstrated in Fig. 6. This
procedure trains a classifier model which learns to map the
extracted representations to target labels. We input the STMM
into the pre-trained RadarAE encoder to extract general rep-
resentations without masking (i.e., the “Discard” operation
in (5) is removed). A classifier model then processes the
representations and determines the user gesture of the input
data. The cross-entropy loss function is applied to optimize
the classifier model. We design a classifier composed of two
transformer encoder layers and two fully-connected layers.
The embedding size of the transformer encoder layers is equal
to He. After the transformer encoder layers, the processed
features of different patches are concatenated and fed to a
two-layer MLP to predict the gesture type.

E. Data Augmentation

For the radar sensing scenario, we devise a customized
data augmentation method, namely random temporal cropping
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Fig. 6: Workflow of supervised learning.

Algorithm 1 RTC

Input: STMM X ∈ RT×Y×2, number of valid frames l
Output: STMM after data augmentation X ′ ∈ RT×Y×2

1: l′ = Uniform[1, l];
2: start = Uniform[0, l − l′]
3: X ′ = Zeros([T, Y, 2])
4: for i = 1, ..., l′ do
5: X ′

i = Xi+start;
6: end for

(RTC). The details of RTC are demonstrated in Algorithm
1. This algorithm randomly crops a segment of the orig-
inal STMM sample to form a new STMM sample. The
Uniform[a, b] in line 1 and line 2 represents the uniform
discrete distribution with the upper bounding and lower bound-
ing set to a and b. The l′ and start stand for the length and
starting index of the cropping. The Zeros(size) in line 3 is
a function that returns a tensor of the specified size that is
filled with zeros. The codes in lines 4-6 copy the cropped
segment to the created tensor. Zero-padding is adopted to
neutralize the reduction in length caused by cropping. RTC
is computationally cheap and can be applied online during
training to produce distinct input in each epoch, which greatly
enhances the generalizability of RadarAE.

F. Lightweight Model and Weight-Sharing

There are 12 and 4 transformer encoder layers in the original
MAE’s encoder and decoder, respectively. As a result, the
MAE model is composed of 93 million parameters. Such a
heavy model can not accommodate to radar sensing due to
the scarce training data and limited computational capacity
of edge devices. Thus, we carefully design a lightweight
model with smaller linear projection dimensions (He = 300,
Hd = 150) and less transformer encoder layers (Lencoder = 3,
Ldecoder = 2). In addition, we apply the cross-layer weight-
sharing mechanism in the pre-training model. In each sub-
model (i.e., encoder and decoder), the multiple transformer
encoder layers share the same parameters, which significantly
reduces the number of trainable parameters of RadarAE. The
number of trainable parameters of our pre-training model
is only 2.6 million, which is only 3% of that of MAE.
This lightweight model structure can avoid over-fitting and
is affordable for resource-constrained devices.
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IV. IMPLEMENTATION

A. Device and Data Processing Configuration

We collect data using IWR1642, a COTS millimeter-wave
radar device with 2 transmitting antennas and 4 receiving
antennas, which yields 8 virtual antennas [24]. The radar is
configured to work with a frame rate of 25 Hz. We adopt an
angle resolution (∆A) of π/32, a velocity resolution (∆V )
of 0.254m/s and a distance resolution (∆R) of 0.05m. The
range of azimuth, velocity and distance are set to [−π/2, π/2],
[−4.06m/s, 4.06m/s] and [0m, 3m], respectively. The size
of HRDM and HRAM are set to 32 × 20 and 8 × 20 (i.e.,
WA = 8, Y = 20). The number of frames in STMM Y is set
to 72, resulting in STMM with the size of 72× 20× 2.

B. Data Collection

RadarAE is evaluated with a gesture recognition task. We
recruit 8 volunteers (4 males and 4 females) to collect radar
data. One feasible scenario of gesture recognition is so-
matosensory games. Thus, we design 7 gestures typically used
in somatosensory games, as shown in Fig. 7. All participants
are required to collect 16-20 data samples for each gesture.
During data collection, volunteers conduct gestures toward the
radar in a 1.2m×1.2m area whose center is 1.8m in front of
the radar. The whole dataset contains 1094 data samples.

C. Models for Comparison

We implement a series of baseline models for comparison.
By default, the models take STMM as input.
RadarBERT is a comparing model adopting the methodology
of another self-supervised learning technique, Bidirectional
Encoder Representations from Transformers (BERT) [13].
Compared with RadarAE, RadarBERT employs a trivial de-
coder (MLP) and randomly masks 15% of frames in STMM
(11 out of 72). Besides, the RadarBERT encoder no longer
drops masked frames. The masked frames have an 80% chance
of being set to zeros, a 10% chance of being replaced with
random numbers, and a 10% chance of remaining unchanged.
RadarAE-S has the same model structure with RadarAE
but it does not utilize a pre-trained encoder. The encoder of
RadarAE-S is randomly initialized and learnable.

DeepCNN is a deep CNN-based model that consists of con-
volutional layers, fully-connected layers, batch normalization
layers and max-pooling layers.
DeepLSTM is a model consisting of 2 bidirectional LSTM
layers followed by an MLP. The STMM is separated into 72
frames along the time domain.
DeepSoli [10] leverages a CNN to extract features from a
sequence of RDM and capture the temporal relations with
LSTM layers. In order to improve its recognition accuracy,
we implement a two-modal CNN network to extract features
from HRDM and HRAM.
RFWash [7] implements a deep learning model with the
structure of CNN+BiLSTM+CTC [25] which takes a sequence
of RDM as input. The original CNN is also replaced with a
two-modal CNN processing HRAM and HRDM.
Soli [8] extracts some statistical features (e.g., mean value and
variation of velocity) from a sequence of RDM and classifies
the gesture with an SVM.

D. Training

We randomly shuffle the whole dataset and divide it into
the unlabeled set (80%), validating set (10%), and testing set
(10%). Then we randomly select a subset of the unlabeled set
as the labeled set. The number of samples for each gesture
type in the labeled set is set to 1, 2, 4, and 8 to simulate the
few-shot scenario. Note that the unlabeled set is used for the
self-supervised learning phase which does not require labeled
data. Only the labels of the labeled set are leveraged in the
supervised learning phase.

The training setup is illustrated in Table. I. In the self-
supervised learning phase, only RadarAE and RadarBERT are
pre-trained with the unlabeled set. In the supervised learning
phase, all models are trained with the labeled set. To mitigate
the effect of random sample selection on final results, we
generate five distinct labeled sets and conduct the supervised
learning procedure five times. The final result is calculated as
the average accuracy of the five models on the testing set.

V. EVALUATION

A. Overall Performance

Fig. 8 shows the performance comparison of RadarAE and
baseline models in different few-shot scenarios. The accuracy
of RadarAE are 79.1%, 92.1%, 97.8% and 99.5% in the 1,
2, 4, and 8-shot scenarios, respectively. RadarAE consistently
outperforms other baseline models by large margins. We
observe that the overall performance of RadarBERT is between
RadarAE and other baselines. This result indicates that the
pre-training method of BERT is not as effective as that of
MAE in our scenario because BERT cannot make use of
inter-distance relations of STMM. As expected, DeepCNN and
DeepGRU perform much worse than RadarAE because they
suffer from over-fitting due to the tiny number of training data.
RFWash and DeepSoli achieve a worse result than DeepCNN
and DeepGRU. We suspect that this is because they adopt
a different input feature (a sequence of HRDM and HRAM)
from STMM. STMM is more compact and informative than



TABLE I: Training Setup

Phase Model Trained Selected Evaluated Data Augmentation Loss Function Epochs

Self-Supervised RadarAE, RadarBERT Unlabeled Set Validating Set N/A RTC MSE 3600
Supervised All Models Labeled Set Validating Set Testing Set RTC Cross-Entropy 700
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Fig. 8: The Performance comparison of RadarAE and base-
lines.

HRDM and HRAM, which mitigates the over-fitting caused by
limited labeled data. Soli only achieves 24.7% in the 8-shot
scenario, probably because the adopted statistical features are
not compatible with our gesture set and radar device. It is
notable that the performance of RadarAE-S is close to that
of baseline models like DeepLSTM, which proves that the
pre-training procedure plays a pivotal role in enhancing the
classifier model’s performance.

Above all, RadarAE achieves outstanding results compared
to state-of-the-art baselines, which verifies the effectiveness of
RadarAE in extracting generic representations and facilitating
radar-based gesture recognition.

B. Impact of Cropping

Based on HRDM and HRAM, we propose the novel feature
STMM which is insensitive to different user positions. To
verify the effectiveness of the cropping procedure, we cal-
culate RV and RA from RDM and RAM instead of HRDM
and HRAM and train a comparing model with the altered
input. The results are shown in Table II. It is apparent that
the performance of RadarAE deteriorates seriously due to
the incapability of adapting to different user positions. The
remarkable decline in accuracy proves that the proposed crop-
ping procedure plays an essential part in precise recognition
with volatile user positions.

TABLE II: Impact of Cropping on the accuracy of RadarAE

Scenario 1-shot 2-shot 4-shot 8-shot

w/ cropping 79.1% 92.1% 97.8% 99.5%
w/o cropping 35.1% 47.9% 53.9% 71.7%

C. Impact of Input Features

In this section, we verify the significance of combining RV
and RA together as the input of our models. We implement
two types of modified RadarAE models for comparison: a)
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Fig. 9: The confusion matrices of (a) RadarAE-RV and (b)
RadarAE-RA.

RadarAE-RV, a comparing model that only leverages the first
channel in STMM (i.e., T frames of continuous RV) as input.
b) RadarAE-RA a comparing model that only leverages the
second channel in STMM (i.e., T frames of continuous RA) as
input. Specifically, the two models are required to reconstruct
the corresponding input in the self-supervised learning phase;
in the supervised learning phase, they are fed with their
corresponding input to infer the gesture categories. In the 1,
2, 4, and 8-shot scenarios, the accuracy of RadarAE-RV and
RadarAE-RA only achieve 51.9%, 53.5%, 62.2%, 69.4% and
49.2%, 64.0%, 69.0%, 79.8%, respectively. Fig. 9a and Fig. 9b
illustrate the confusion matrices of these models in the 4-
shot scenario. We find that RadarAE-RV frequently confuses
symmetrical gestures, such as “left hook” and “right hook”;
RadarAE-RA often makes wrong predictions for the gestures
with similar moving ranges, like “right punch” and “right
hook”. This result indicates that RV provides information
about motions along the radial direction, while RA provides
information about motions along the tangential direction. Both
RV and RA are indispensable for precise gesture recognition.

D. Impact of Patch Size

In this part, we evaluate the performances of RadarAE
models with the patch sizes of 2× 10, 4× 10, 3× 5, 3× 20,
and 3× 10. The results are demonstrated in Fig. 10. We find
that the patch size of 3 × 10 achieves the best performance.
For the patch size of 3×20, the performance degrades because
the model cannot utilize inter-distance relations as the patch
size along the distance axis equals Y . We believe that a large
patch size (e.g., 3 × 20 and 4 × 10) worsens the recognition
accuracy due to the insufficient temporal and inter-distance
relations. However, when the patch size gets too small (e.g.,
2×10 and 3×5), the model fails to extract enough information
from single patches and becomes less accurate. In addition,
the patch size should be smaller along the time axis, as the
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Fig. 10: Accuracy of RadarAE with different patch sizes.
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Fig. 11: Accuracy of RadarAE with different masking rates.
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Fig. 12: The effect of weight-sharing
and data augmentation on the recognition
accuracy.
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Fig. 14: Visualization of learned repre-
sentations.

temporal relations between patches provide more instructive
information for gesture recognition than the inter-distance
relations do.

E. Impact of Different Masking Ratio

This section investigates the influence of different masking
ratios. In Fig. 11 we plot the accuracy of RadarAE with dif-
ferent masking ratios. We find that 0.75 is the optimal choice
for our scenario whereas larger or smaller masking ratios
undermine the quality of self-supervised learning. The behind
reason is that: a relatively high masking ratio is necessary
to prevent the model from simply copying the surrounding
patches to reconstruct the missing ones. Yet an extremely high
masking ratio provides insufficient information to reconstruct
the original STMM, making the model fail to converge. The
masking ratio of 75% avoids the cheating behavior of the
model and leaves adequate information for reconstruction,
allowing RadarAE to extract representations from the input
effectively.

F. Impact of Data Augmentation and Weight-Sharing

This subsection investigates the impact of the proposed
data augmentation (RTC) and weight-sharing mechanism. For
comparison, we train two RadarAE models without data
augmentation or weight-sharing. The accuracy of RdarAE and
comparing models are plotted in Fig. 12. The results reveal that
the performance of the model without data augmentation de-
teriorates tremendously, probably due to the reduced diversity
of training samples. It is notable that the weight-sharing mech-
anism also slightly improves the recognition accuracy. This is
likely because the reduced amount of parameters alleviate the
severe over-fitting. To have a better understanding of the effect
of RTC and weight-sharing, we plot the smoothed validating

loss in the self-supervised learning phase (MSE loss on the
validating set) of RadarAE and comparing models in Fig. 13.
The validating loss without data augmentation is much higher
and even begins increasing when the epoch number exceeds
1200, implying that RTC enriches the diversity of the dataset
and does not destruct the original data distributions at the same
time. Besides, the validating loss without weight-sharing is
slightly higher than that of RadarAE, which conforms to our
previous analysis of the effect of weight-sharing.

G. Representation Visualization

To verify the effectiveness of representation learned by
RadarAE, we leverage t-distributed Stochastic Neighbor Em-
bedding (t-SNE) [26] to map the extracted representations into
2-D space. Fig. 14 shows the distribution of representations of
different gesture types. It is apparent that the representations of
different gestures tend to appear in different positions, which
helps the classifier model distinguish different gestures. We
also discover that the representations of some gestures form
several distinct clusters, probably due to the high variation
of users’ behaviour. This phenomenon leads to a relatively
low recognition accuracy in 1-shot and 2-shot scenarios. An-
other interesting finding is that the representations of similar
gestures (left punch, right punch, left hook, and right hook)
appear to be close to each other. In contrast, the representations
of right turn, left turn, and block have obvious boundaries
because these gestures have very different patterns from oth-
ers. Above all, the representations learned by RadarAE are
discriminative and beneficial to follow-up gesture recognition.

VI. RELATED WORK

Millimeter-wave radar-based gesture recognition has at-
tracted much attention since millimeter-wave radars are low-



cost and easy to deploy compared with other wireless de-
vices [7]–[12]. Many radar-based works [7]–[11] adopt radars
transmitting FMCW signals, which are modulated with the
reflectors’ distance, velocity, and azimuth. Thus, some works
perform FFT over different axes of FMCW signal data to
generate RDM as the input of their deep learning model [7],
[8], [10]. For instance, RFWash [7] processes RDM with a
deep learning model with the structure of CNN+LSTM+CTC
[25] to predict handwashing gesture sequence performed at a
bathroom sink. One shortage of these works is that they do not
utilize the information of directions of reflectors, which may
lead to the incapability of recognizing symmetric gestures.
Other works generate sparse 3-D point clouds from RDM for
further processing [9], [11]. [9] proposes a hybrid architecture
combining the PointNet++ model [27] and LSTM to infer
the gesture type from the point clouds data. However, these
methods are only suitable for radars with a 2-D antenna array
because radars with a 1-D antenna array (including our radar
device, IWR1642) cannot generate 3-D point clouds. Though
these existing methods perform well, they need a large amount
of labeled data. In contrast, our framework enables radar
sensing models to achieve superior performance with a small
number of labeled samples.

VII. CONCLUSION

This paper presents RadarAE, a framework pushing forward
the application of radar-based gesture recognition by fusing
self-supervised learning techniques. Due to the sparseness of
radar data, we propose a novel input feature STMM to facil-
itate the self-supervised learning procedure. Meanwhile, we
meticulously analyze the properties of radar data and propose
an MAE-like pre-training model with a series of adaptions and
enhancements to make RadarAE learn better representations
from unlabeled radar data. Extensive experiment results verify
that RadarAE outperforms state-of-art works by a large margin
in few-shot scenarios, addressing the over-fitting caused by
the small amount of labeled data. Due to its low reliance
on labeled data, RadarAE is a pivotal step towards practical
gesture recognition systems.
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