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Abstract—In recent years, location-based services have been
widely applied not only in daily life but also in automation
industries. As one of main location sensing technologies, RFID
based localization has attracted increasing attention. Existing
synthetic aperture RFID localization systems use the inverse
correlation filter to reconstruct holograms and achieve sat-
isfactory accuracy. However, these methods require accurate
aperture positions for theoretical signal construction, while
the ubiquitous aperture uncertainty in practice causes non-
negligible performance degradation. In this paper, we present
PEC, an accurate synthetic aperture RFID localization system
with aperture position error compensation, which has a major
advantage over the classic systems for no need to know the exact
trajectory of the synthetic aperture. We first build a mathematical
model for localization and merge all coherent received signals to
estimate the tag position. Then we propose an iterative algorithm
which can alternately estimate both the tag position and the
aperture position error. We have implemented and evaluated PEC
using commercial-off-the-shelf (COTS) RFID devices. Extensive
experimental results show that it achieves the cm-level accuracy
with aperture position error in noisy environments, which proves
its effectiveness and robustness.

Index Terms—RFID, Localization, Aperture Position Error
Compensation

I. INTRODUCTION

The integration with information technology like Internet
of Things revolutionizes manufacturing industry worldwide,
such as Industrial Internet and Industry 4.0, changing the way
of producing and moving goods in factories and warehouses.
Radio Frequency Identification (RFID) tags have been widely
deployed in intelligent factories as important information car-
riers [1], [2]. Meanwhile, Automated Guided Vehicle (AGV) is
introduced to reduce manual work with high flexibility and low
installation cost especially in intelligent manufacturing and
flexible manufacturing. AGV equipped with an RFID reader
needs to perform complex tasks, such as searching and locating
the desired object attached with RFID tags, picking it up and
delivering it to the destination workstation or assembly line
with autonomous navigation capability, all of which require
cm-level localization accuracy [1], [3].

Indoor robot or AGV localization and navigation have been
arousing great interests in both the academia and industry
recently. Some encouraging systems are proposed but with
restrictions in practice. Vision or Laser based systems [4]
achieve high accuracy with strong dependence on light or line-
of-sight (LOS) and may arouse serious privacy concerns. AGV
using magnetic tape or inductive wire based navigation [5] is

limited by the track. Inertial navigation systems [6] usually
have serious accumulated errors, and other wireless signal
based localization systems are open to interference [7], [8].
These existing systems cannot perfectly satisfy the demand in
intelligent manufacturing for low-cost, effective, and easy-to-
deploy localization, as well as applicability in bad lighting and
NLOS (non-line-of-sight) scenarios.

Passive RFID tags, benefiting from its wireless, inexpensive
and battery-free sensing ability [9], have been extensively
applied in indoor localization applications. The state-of-the-
art RFID localization methods are incorporating with Syn-
thetic Aperture Radar (SAR) technology to open up endless
potential for better localization performance. These synthetic
aperture RFID localization systems [9]–[16] usually leverage
the relative motion between the reader antenna and the tag and
achieve cm-level accuracy. With the synthetic aperture RFID
localization technology, the AGV with the RFID reader can
not only identify and locate target objects attached with tags,
but also achieve self-positioning using a few reference tags,
which is a dual problem of the tag localization.

One limitation of these systems is that they need to know the
accurate aperture position. For each possible target position,
they leverage the inverse correlation filter between measured
signals and corresponding theoretical signals to reconstruct
the likelihood, while these theoretical ones are determined
by aperture positions [13]. Their performance will degrade
significantly in the presence of the aperture position error
(the gap between the known aperture position and the actual
one) due to the distorted theoretical signal. As shown in Fig.
1, with a greater accumulated error along the aperture, the
estimated position of the synthetic aperture RFID localization
technology increasingly deviates away from the actual one.
Furthermore, noise and other interference in practice will also
result in performance degradation.

Unfortunately, the aperture position error is very common
for moving platforms without sophisticated sensors. To address
this issue, Mobitagbot [13] assumes the speed and speed drift
to be constant for calibration. This assumption is applicable
for slow robots moving at a constant speed (0.05 m/s), while it
does not hold for faster AGVs, of which the acceleration and
deceleration are not negligible. The motion compensation used
for airborne or spaceborne SAR [17]–[19] usually simplify the
relative motion model, or focus on the phase error, or take
hundreds of seconds to compensate for phase distortions.

Toward these ends, we propose PEC, a synthetic aperture
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(a) 0 m (0.6 m, 0.5 m).
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(b) 0.025 m (0.59 m, 0.48 m).
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(c) 0.05 m (0.57 m, 0.44 m).
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(d) 0.1 m (0.55 m, 0.39 m).

Fig. 1. Holograms with different accumulated error along the aperture. (The pentagram is the actual position (0.6 m, 0.5 m) and hexagram means the estimated
position. The title of each subfigure is the accumulated error, e.g. 0.1 m in (d) means that the accumulated error increases from 0 (the first aperture point) to
0.1 m (the last aperture point). There are 21 aperture points with uniform spacing from (0, 0) to (1 m, 0).)

RFID localization method with aperture position error com-
pensation. The challenges and solutions are as follows:

(1) How to compensate for the aperture position error?
A straightforward idea is to traverse all possible aperture
positions like the hologram, but it is impractical to construct
phase profiles for all possible positions due to exponential
time complexity. Instead, PEC abstracts the localization as
an optimization problem, described by a localization model,
in which the aperture position error and the tag position are
independent. The proposed model directly uses the aperture
position error without any approximations, which can account
for any measurement method of a relative trajectory. On the
basis of deliberating over the factors that dominate phase
changes, the tag position and aperture error are alternately
estimated by an iterative algorithm. In the second step of each
iteration, the aperture position error is calculated by solving a
set of unconstrained optimization problems.

(2) How to estimate the target tag position accurately?
Unlike existing synthetic aperture RFID localization systems,
PEC uses reflection coefficients instead of likelihood obtained
with the inverse correlation filter to represent the target tag
position. PEC takes full advantage of reported phase at differ-
ent points and different carrier frequencies and merges them
coherently. Inspired by radar imaging, we introduce com-
pressed sensing to estimate the reflection coefficients for tag
localization. Moreover, the relative phase and phase calibration
are utilized to improve the localization performance.

In summary, we have the following contributions: To the
best of our knowledge, PEC is the first synthetic aperture RFID
localization method with aperture position error compensation.
We propose a localization model in consideration of aperture
position error and formulate the localization problem as an
optimization problem, which is solved by an iteration algo-
rithm. We build a prototype of PEC using COTS RFID devices,
and extensive experimental results prove its effectiveness and
robustness with an average localization accuracy of 0.05 m.

The remainder of this paper is organized as follows. At
first, Section II presents the localization model. In Section III,
the detailed designs of PEC are proposed. Then Section IV
demonstrates the evaluation of PEC. We review the related
works in Section V. Finally, Section VI concludes this paper.

II. PEC LOCALIZATION MODEL

Present COTS RFID readers can report the phase value ϕ,
which includes three components [20]:

ϕ = (ϕprop + ϕr + ϕt) mod 2π, (1)

Fig. 2. Synthetic aperture RFID localization. (The midpoint of Cap is set as
the coordinate origin, and the direction of motion is the x-direction.)

where ϕprop = 4πd/λ is the phase rotation due to the signal
propagation in the space (λ is the carrier wavelength, and 2d
is the propagation distance), while ϕr and ϕt denote the phase
accumulated by the reader antenna and tag respectively. ϕt can
be deemed as a constant for one tag, whereas ϕr is frequency-
dependent. Due to a fundamental limit, ϕ repeats when the
distance d changes every λ/2 and it can not be unwrapped
without ambiguity, leading to ambiguous estimated distance.

The synthetic aperture RFID localization leverages coher-
ence of reported phase at different aperture points to deal
with this ambiguity. Its geometric model with a linear aperture
is depicted in Fig. 2. The reader antenna moves along Cap,
known as the synthetic aperture, and interrogates a static tag p
at aperture points am. The attenuation and ϕt caused by the tag
is recorded as its reflection coefficient r, so the received signal
is r exp{−j(4πd/λ+ϕr)}, where the received signal strength
is neglected due to its coarse-grain and instability [12].

Evidently, the possible tag position is in the RFID in-
terrogation zone and is also limited by some deployment
constraints. Unlike existing RFID localization methods, we
regard all possible tag positions (zone D) as a whole to
reflect the signal, which is similar to the synthetic aperture
radar imaging [19]. An RFID reader can only successfully
demodulate the signal reflected from the interrogated tag at
one time point [21]. Accordingly, the received signal can be
viewed as the cumulative sum of reflected signals from all
points with respective r, and only the reflection coefficient
corresponding to the actual tag position is non-zero.

The zone D is partitioned into P × Q grids to represent
possible tag positions for convenience, which can be expressed
by a PQ× 1 reflection coefficients vector r:

r = [r(1, 1), ..., r(1, Q), ..., r(p, q), ..., r(P,Q)]T (2)

where r(p, q) is the reflection coefficient of the grid in pth



row and qth column of the discrete zone D.
Most UHF RFID readers use frequency hopping spread

spectrum [21], which means the reported phase at different
aperture points may have respective carrier frequencies. If the
carrier frequency index of aperture point am is recorded as nm,
the ideal received signals along the aperture can be written as
an M × 1 column vector ŝ = [ŝ(1), ..., ŝ(M)]T :

ŝ(m) =

PQ∑
i=1

r(i) exp

{
−j
[

4πd(m, i)

λnm

+ ϕnm,r

]}
(3)

where r(i) is the reflection coefficient of the ith grid, d(m, i)
is the distance between this grid and am, and λnm

is the
corresponding wavelength. The unique non-zero element of
r represents the tag position, so the localization problem is
to find the non-zero r(i). In the space, different points suffer
different ambient noises and multi-path effects [22]. Those
distortions will weaken each other in the position estimation
with the dissimilar reported phase at different aperture points.

The received signal s along the aperture can also be written
as a vector s = [s(1), ..., s(M)]T , which are supposed to be
equal to the ideal one ŝ. Therefore, all received signals s can
be expressed as s = Ar in the form of matrix, where the
M × PQ measurement matrix A expresses the relationship
between the reflection coefficients r and the measured signals
s. The elements of s and A can be calculated by (4):

s(m) = exp{−jϕm},

a(m, i) = exp

{
−j
[

4πd(m, i)

λnm

+ ϕnm,r

]}
(4)

where ϕm is the reported phase at aperture point am, and
a(m, i) is the theoretical signal reflected from the ith grid to
the antenna at am without the reflection coefficient r(i). With
a noise vector n as the error correction term, the synthetic
aperture RFID localization model is:

s = Ar + n (5)

As mentioned before, it is usually difficult to get the exact
aperture position in real situation, but A depends on the
aperture position, and the aperture position error will result
in the uncertainty of A. For example, the position of aperture
point am is known as (xm, ym), while its actual position is
(xm + ∆xm, ym + ∆ym), where ∆xm and ∆ym represent
the aperture position error. Then for the ith grid (xi, yi)
of D, its distance to am in (4) is denoted as d(m, i) =√

(xi − xm)2 + (yi − ym)2, while the actual one should be:

d′(m, i) =
√

(xi − xm −∆xm)2 + (yi − ym −∆ym)2 (6)

The divergence between d(m, i) and d′(m, i) will cause
error in localization. The measurement matrix A can be
denoted as a function of the aperture position error e, and
the localization model (5) is modified as:

s = A(e)r + n, e = [∆x1,∆y1, ...,∆xM ,∆yM ]T (7)

Accordingly, the solution r̂ of (5) and (7) has only one non-
zero element. As a consequence, the problem of localization

is transformed into finding a vector r̂ with a single non-zero
element which satisfies (5) and (7), and the index i of the non-
zero element corresponds to the actual tag position according
to (2). Because of noise and multi-path, it is likely that the
number of non-zero elements in r̂ is more than one. However,
if the direct reflected signal by the interrogated tag plays a
dominant role in the received signal for most aperture points,
the biggest non-zero element represents the actual tag position,
due to the spatial diversity of noise and multi-path. Unless the
direct propagation path is blocked, the signal from the direct
path is usually much stronger than signals from indirect paths.
Finally, the localization problem is transformed into finding
the index of the biggest non-zero element in r̂.

III. DETAILED DESIGNS OF PEC

In this section, the algorithm for synthetic aperture RFID
with aperture position error compensation is proposed.

A. Basic Method without Position Compensation

In this subsection, we focus on the simplified localization
model (5), where the aperture position error is ignored.

In practical environments, the number M of aperture points
in (5) is much less than the number of grids PQ, so (5) has
infinite solutions. Fortunately, the prior knowledge that r has
only one non-zero element, can in turn simplify the problem
(5) [23]. Due to the sparsity of r, the synthetic aperture RFID
localization (5) is a Compressed Sensing (CS) problem:

min
r
||r||0, s.t. ||Ar− s||2 ≤ ε (8)

where the sensing matrix A should satisfy the restricted
isometry property (RIP), r is a k-sparse vector with k = 1,
and noise n is bounded with ε. If A satisfies RIP, the number
of aperture points must be bigger than 0.28kln(PQ/k) with
M ×PQ matrix A (corollary of RIP) [24]. If there are 10000
grids, the minimum number of aperture points is 2.57 or 4.77
when k=1 or k=2, which can be satisfied in most scenarios.
According to Lagrange multipliers, (8) can be written as:

r = arg min
r

{
||Ar− s||22 + µ||r||0

}
(9)

where µ is the regularization coefficient.
Then we use Stagewise Weak Gradient Pursuit (StWGP)

[25] to get the solution of (9). It is an iterative process, and the
results (r[j] and n[j]) of the jth iteration are the approximations
of r and n in the model (5). It contains two main steps:

In jth iteration, StWGP selects new column vectors of the
matrix A which are not selected in the previous iterations and
records selected ones (the index set of these columns is Tj).
The stagewise weak selection selects several columns in each
iteration, and can reduce the required iterations. The selection
is based on both residual n[j] and the column vector of A:

Tj = Tj−1 ∪
{
t :
|A(:, t)Hn[j]|
||A(:, t)||2

≥ ηmax
i

|A(:, i)Hn[j]|
||A(:, i)||2

}
(10)

where the weakness parameter η ∈ (0, 1] is chosen to increase
iteratively. Then all selected columns are used to construct a
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(a) Basic method (0.12 m, 1.58 m).
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(b) Phase calibration (0.13 m, 1.60 m).
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(c) PEC (0.19 m, 1.73 m).

Fig. 3. The amplitude of reflection coefficients (r) in D after normalization. (The cross represents the actual position (0.20 m, 1.80 m) and the circle represents
the estimated position.)

new matrix ATj
. Tj columns of A form the corresponding

columns of ATj
, while other columns of ATj

are 0.
Then we update r[j] with r[j−1]+αd, where α is update step

size and d is the update direction AHTj
n[j] (the steepest descent

direction of ||s− ATj
r[j]||2). StWGP stops when the residual

error is smaller than a threshold or the number of iterations
reaches a fixed value. Then the position p corresponding to
the maximum | ˆr(i)| is regarded as the localization result:

i = arg max
i

| ˆr(i)| (11)

With the data collected from one typical experiment (22
tag readings and 10000 grids), Fig. 3(a) depicts the amplitude
of reflection coefficients (r) in D, where the colors of grids
denote amplitudes of corresponding reflection coefficients.
Due to the prior knowledge that r is 1-sparse, we set η to
1 for getting the result with only one iteration. It is apparent
that reflection coefficients of most grids are zero (blue), while
the grid with non-zero reflection coefficient (red) is near the
ground truth.

B. Localization with Phase Calibration

Frequency-dependent ϕn,r in (4) needs to be previously
measured for every carrier frequency. Fortunately, ϕn,r can
be simply eliminated for each other with the relative phase.
The first reported phase of each carrier frequency nm̊ (at
am̊) is selected as the reference for others with the same
frequency (nm = nm̊). Then the reported phase ϕm subtracts
the corresponding reference phase ϕm̊. Meanwhile, the ideal
phase 4πd(m, i)/λnm

for each aperture point also subtracts the
corresponding one 4πd(m, i)/λnm̊

. The vector s and matrix
A in (5) are modified with the relative phase:

s(m) = exp{−j(ϕm − ϕm̊)}

a(m, i) = exp

{
−j 4π(d(m, i)− d(m̊, i))

λnm

}
(12)

The StWGP method in Section III-A can still be utilized for
(9) with the modified s and A.

In addition, existing RFID localization systems usually
abstract the reader antenna as a point. However, for a practical
antenna, its phase center from which radiation emanates to
form ideal spherical wave fronts, moves on the evolute of
the equiphase wave front [10]. Therefore, the reported phase
is AoA-dependent. Different aperture points have different
AoAs, which will induce different phase offsets, causing
inaccurate localization result. The relative motion between the
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Fig. 4. The AoA response p(θ) (fitting curve) of reported phase.

reader antenna and the tag typically excludes relative rotation,
so the tag orientation (relative to the reader antenna) and the
polarization mismatch angle are usually stable.

We measure this phase offset through a simple experiment
with a fixed carrier frequency. In an open space, a static tag is
deployed at (0.5 m, 0.13 m), and a reader antenna (transmitting
power 24 dBm) moves from (0, 0) to (1.0 m, 0), so the
AoA changes from 0.25 rad to 2.89 rad, while tag orientation
remains unchanged. At each aperture point, the difference
between the reported phase and the corresponding theoretical
phase offset ϕprop, represents the phase offset due to the reader
antenna, the tag and AoA. The first two are constants in this
experiment. Therefore, this difference reflects the relationship
between the reported phase and AoA. As illustrated in Fig. 4,
the phase offset caused by AoA (blue curve) has a broad range.
In some situation, this phase offset has little fluctuations. For
example, if the tag is at (0.5 m, 2.0 m), its AoA changes from
1.1 rad to 2.0 rad, in which scope the AoA response is stable
from Fig. 4.

To calibrate this phase offset, the aforementioned method is
utilized to obtain the fitting AoA response curve p(θ). Then
for an aperture point outside the stable scope, all theoretical
phase offset ϕprop in matrix A are corrected by adding p(θ).
Its AoA θ(m, i) is estimated based on the antenna position am
and the tag position p (corresponding to index i of the vector
r). So the measurement matrix A in (12) is modified as:

a(m, i) = e
−j

4π(d(m, i)− d(m̊, i))

λnm

+p(θ(m,i))−p(θ(m̊,i))


(13)

Then the AoA response of the reported phase is normalized
in (13). Although the fitting curve p(θ) is measured with the
unchanged tag orientation, the difference between p(θ(m, i))
and p(θ(m̊, i)) usually remains unchanged due to the static
tag with the other tag orientation. For example, if we rotate
the tag π/4 rad, the corresponding p(θ) (red curve) almost has
the same shape as the blue one.



Algorithm 1 Synthetic aperture RFID localization with aper-
ture position error compensation
Input: received signal s, measurement matrix A(e)
Output: reflection coefficient r, aperture position error e

1: ir ← 0, initialize e[0] as zero vector
2: repeat
3: r[ir+1] ← arg minr

{
||A(e[ir])r− s||22 + µ||r||0

}
4: e[ir+1] ← arg mine{||A(e)r[ir+1] − s||22 + λ||e||2}
5: ir = ir + 1;
6: until ||r[ir] − r[ir−1]||22/||r[ir−1]||22 < ε
7: return r[ir], e[ir]

With the same data used in Fig. 3(a), the estimated position
is slightly improved to (0.13 m, 1.60 m) as illustrated in Fig.
3(b) after phase calibration, whose estimated phase values are
more consistent with the measured ones.

C. Localization with Aperture Position Error Compensation

As aforementioned, aperture position error is unavoidable.
This subsection proposes a synthetic aperture RFID localiza-
tion method with aperture position error compensation.

In the model (5), the measurement matrix A is determined
by the distance between the aperture point and the grid in D,
and regarded as known one previously. In consideration of the
aperture position error (model (7)), the localization problem
(9) becomes a joint optimization one, in which both the tag
position and the aperture position error need to be estimated:

[r, e] = arg min
r,e

{
||A(e)r− s||22 + µ||r||0 + λ||e||2

}
(14)

We introduce an iterative algorithm to solve this problem:
Firstly, we fix the aperture position error e and estimate
the reflection coefficient vector r. Secondly, we estimate the
aperture position error e based on the reflection coefficient
vector r from the first step. Then we upgrade the measurement
matrix A with the new aperture position error e for the next
iteration. This procedure continues until r has converged.
The synthetic aperture RFID localization algorithm flow with
aperture position error compensation is shown in Algorithm
1, where ε is a threshold.

Given aperture position error e, the first iteration step is
a standard CS based synthetic aperture RFID localization
problem (9), so it can be solved by StWGP mentioned in
Section III-A with the calibration discussed in Section III-B.

In the second iteration step, the aperture position error is
the optimization target, and µ||r[ir+1]||0 is a constant. Here
we deduce the first complex term without the simple λ||e||2.
The loss function L[ir+1](e) = ||A(e)r[ir+1] − s||22 is:

L[ir+1](e) =

M∑
m=1

∣∣∣∣∣
PQ∑
i=1

a(m, i)r[ir+1](i)− s(m)

∣∣∣∣∣
2

(15)

where r[ir+1](i) is the ith element of r[ir+1] in the irth itera-
tion. The position error at initial point of the aperture can be
considered as 0 due to the relative motion. According to (15)
and (12) or (4) (with or without relative phase respectively),

the mth measured signal error L[ir+1]
m is only related to the

mth aperture error em = [∆xm,∆ym]T :

L[ir+1]
m (em) =

∣∣∣∣∣
PQ∑
i=1

a(m, i)r[ir+1](i)− s(m)

∣∣∣∣∣
2

(16)

Then the loss function (15) can be written as L[ir+1](e) =∑M
m=1 L

[ir+1]
m (em), and the optimization problem in the sec-

ond iteration step is equivalent to a group of independent
optimization problems m ∈ [2,M ]:

e[ir+1]
m = arg min

em
L[ir+1]
m (em) (17)

This is an unconstrained optimization problem, which can be
solved by gradient-based optimization methods, such as the
Quasi-Newton method.

The precondition of using this kind of methods is that the
gradient can be calculated. The gradient of the loss function
L

[ir+1]
m (em) with respect to position error em is:

∂L
[ir+1]
m (em)

∂em
=

[
∂L

[ir+1]
m (em)

∂∆xm
,
∂L

[ir+1]
m (em)

∂∆ym

]T
(18)

Take ∆xm for example, the first element of the vector in
(18) can be calculated based on the chain rule for the derivative
of the composition functions:

∂L
[ir+1]
m (em)

∂∆xm
=

PQ∑
i=1

∂L
[ir+1]
m (em)

∂d′(m, i)

∂d′(m, i)

∂∆xm
(19)

The first part of (19) is:

∂L
[ir+1]
m (em)

∂d′(m, i)
= 2<

{
l(m)r[ir+1]∗(i)

∂a∗(m, i)

∂d′(m, i)

}
(20)

where the function <(x) is the real part of x and
l(m) is (

∑PQ
i=1 a(m, i)r[ir+1](i) − s(m)). The gradient

∂a∗(m, i)/∂d′(m, i) depends on a(m, i). For a(m, i) =
exp[−j4π(d(m, i)− d(m̊, i))/λnm

] in (12), we have:

∂a∗(m, i)

∂d′(m, i)
=
j4π

λnm

exp

{
j

4π(d(m, i)− d(m̊, i))

λnm

}
(21)

According to (6), the second part of (19) is:

∂d′(m, i)

∂∆xm
=

∆xm + xm − xi
d′(m, i)

(22)

According to (18)-(22), the gradient of the loss function
L

[ir+1]
m (em) with respect to position error em is achieved, and

e[ir+1]
m in (17) can be solved. So the second iteration step

in Algorithm 1 is consequently implemented. In addition, the
gradient-based method achieves the unique solution with the
2-norm term λ||e||2.

The Algorithm 1 is an iterative process, and the convergence
of the first and the second iteration step is guaranteed by the
property of the CS signal recovery and the gradient-based
method respectively, so the Algorithm 1 can be convergent
[18]. If η in StWGP is set to 1, Algorithm 1 will converge in
the first iteration. In order to avoid reaching the local optimum



in early iterations and increasing the chance of trending the
global optimum, StWGP (first iteration step) in early iterations
should obtain enough non-zero elements in r (η < 1 initially).
As the iterations (Algorithm 1) progress, a gradually increasing
η will ensure that StWGP achieves less non-zero elements in
r to avoid jumping to the worse solution.

Just as existing synthetic aperture RFID localization sys-
tems, the computational complexity of PEC depends on the
number of aperture points M and the number of grids N ′ in the
zone of possible tag positions. In every iteration of Algorithm
1, all N ′ grids need to be traversed. The time complexity of
StWGP is O(aMN ′) [25] for M×N ′ measurement matrix A,
where a is the number of iterations in StWGP, and it is usually
small. The time complexity of the gradient-based method
(second iteration step) is O(bMN ′) with b times iterations.
In fact, the gradient calculation in the second iteration step
is more complex than multiplication in StWGP, and usually
b is bigger than a. So the main latency of the system is due
to the second iteration step. Fortunately, the second iteration
step can be sped up. Due to the sparsity of vector r, most
of its elements are zero. Therefore, only the columns in A,
which correspond to the non-zero elements of r, are updated
for the calculation in the second iteration step. It can greatly
decrease the computational burden in the second iteration
step. So the time complexity of the second iteration step is
O(bMN ′′), where N ′′ is the number of non-zero elements of
r and N ′′ � N ′.

After aperture position error compensation, the amplitude
of estimated r is shown in Fig. 3(c), and the result is
(0.19 m, 1.73 m) with only about 7 cm error. With aperture
position error compensation, the position around the tag is
more likely to produce the signal (phase) ŝ similar to the
reported one s, which is selected according to (10).

IV. EVALUATION AND ANALYSIS

We implement PEC with COTS RFID devices and demon-
strate its performance with extensive experiments.

A. Implementation

PEC is implemented with a COTS RFID reader Impinj R420
[26] and a Laird S9025PR antenna [27] without any mod-
ification. This RFID reader operates in the frequency range
of 920.625-924.375 MHz (16 carrier frequencies) with the
reader mode “Dense Mode (M=4)” for the practical industrial
settings. We adopt LLRP protocol [28] extended by Impinj to
communicate with the reader and obtain the phase report as
soon as possible [29]. The system is implemented using C#
on a computer equipped with an Intel Core i9-7900X CPU 3.3
GHz and a 16 GByte memory.

As shown in Fig. 5(a), a self-designed robot leverages
the SLAM-based (Simultaneous Localization and Mapping)
navigation algorithm with a Kinect and its mean localization
error is smaller than 10 cm. The robot is programmed to move
at the speed of 0.5 m/s. In practice, it is difficult to get the
accurate robot position, we also use a linear guide depicted
in Fig. 5(b) for accurate aperture position. The Laird antenna

(a) The robot. (b) The linear guide.

Fig. 5. The experiment setup.

is mounted on this equipment with the maximum horizontal
moving range of 1 m. This equipment can accurately report
its horizontal position in mm-level. We conduct extensive
experiments in a typical office room (Fig. 5(a)) and a typical
meeting room (Fig. 5(b)) with varying environmental settings,
and both scenarios own rich multi-path.

B. Accuracy of PEC

We implement PEC, Tagoram [9] and MobiTagbot [13] with
the same hardware shown in Fig. 5 to locate 20 books with
library RFID tags for comparison. When the robot moves
along the bookshelf (0.5 m apart), the reported phase and the
current position of the robot are both recorded.

As mentioned before, the aperture position error will reduce
the accuracy of synthetic aperture RFID localization system.
The robot moves about 1-1.5 m along the bookshelf, and
the tag readings for each tag is about 20-30. After over 100
times experiments, the Cumulative Distributed Function (CDF)
of the localization error is illustrated in Fig. 6(a-d), and the
spacing of grids is 0.01 m for all systems. As we can see,
when the aperture length is 1 m, PEC with aperture position
error compensation achieves 5 cm mean error in the lateral
direction (parallel to the aperture), outperforming Tagoram,
Mobitagbot and PEC without position error compensation by
1.6×, 2× and 1.8× respectively. This improvement gives the
credit to the aperture position error compensation and phase
calibration. And due to much sparse tag readings, accuracies
of Tagoram and Mobitagbot fail to put on a par with their
previous results.

In the radial direction (perpendicular to the aperture), PEC
still achieves 14 cm mean error, smaller than nearly 20 cm
achieved by others. PEC and Mobitagbot leverage multiple
carrier frequencies, so they achieve a little higher accuracy
in the radial direction. If the relative trajectory has both
x-direction and y-direction component, the radial direction
accuracy will be much better with more aperture diversity due
to the y-direction component of the trajectory [9].

Usually, a longer aperture can improve the localization
accuracy of synthetic aperture RFID [10], but at the same
time, a bigger accumulated error of AGV position may be also
induced. As shown in Fig. 6(c), with the aperture of 1.5 m,
the mean error of PEC, Tagoram, Mobitagbot and PEC w.o.
is about 4 cm, 7.9 cm, 9 cm and 8.5 cm respectively. Other
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(b) Radial direction with 1 m aperture.
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(c) Lateral direction with 1.5 m aperture.
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(f) With accumulated error (0 at the first aperture
point to 0.05 m at the last aperture point).

Fig. 6. Localization error with (a-d, f) or without (e) aperture position error. (PEC w.o. means PEC without position error compensation)

than PEC, their performance improvements are limited. In the
radial direction, the accuracy is still dm-level.

We also compare their performance in the controlled sce-
nario with/without aperture position error using the linear
guide shown in Fig. 5(b). In each experiment, 10 tags are
placed in a row with equal spacing and a fixed distance
to the linear guide with 21 equally spaced aperture points.
Experiments are repeated for 50 times by arbitrarily changing
spacing and distances to collect measurement data, and the
results are illustrated in Fig. 6(e)(f). As expected, when there
is no aperture position error, these systems achieve similar
accuracy. When there is an artificial accumulated error from
0 to 0.05 m along the aperture, only the degradation of
PEC is quite limited. This demonstrates the effectiveness and
robustness of aperture position error compensation in PEC.
Tagoram and MobiTagbot leverage differential augmented
hologram with multiple antennas and weight based on entropy
to enhance performance respectively. However, they are lack
of compensation for the aperture position error.

C. Benchmarks

To further analyze the performance of PEC, several bench-
marks are performed.

1) System Latency: To verify the latency of PEC, we run
1000 times simulation with 20 aperture points for a random
target tag in 100 × 100 grids. The simulated aperture positions
contain random position error and the measured phase values
are all added with Gaussian noise N(0, 0.12) [9], [29]. The
relationship between the iteration times and the residual error
(||A(e[ir])r[ir] − s||22, ir is the irth iteration) is illustrated in
Fig. 7(a). After 2 iterations, the mean residual error converges
towards 0. As mentioned in Section III-C, the second iteration
step in Algorithm 1 consumes more time, while it can be sped
up with less non-zero elements of r. As depicted in Fig. 7(a),
the time cost for the first iteration of Algorithm 1 is about 0.5 s
on our PC, while it is less than 0.23 s for other iterations. After

2 iterations, the mean error in the lateral direction is smaller
than 5 cm, as shown in Fig. 7(b). The mean localization results
in both two directions converge at 4 or 5 iterations, so we set
the maximum number of iterations to 5 in PEC. Then the total
latency is about 1.5 s, which is within an acceptable level for
applications with low real-time demand.

2) Phase Calibration: As shown in Fig. 7(c), when we use
the proposed iterative algorithm, the mean error without the
phase calibration increases by 1.1 cm in the lateral direction
compared to that with the phase calibration. In our experi-
ments, AoA changes from π/4 rad to 3π/4 rad. According to
Fig. 4, the corresponding AoA response changes almost 1 rad.
Although PEC without phase calibration achieves satisfactory
accuracy owing to the effective position error compensation,
phase calibration is still necessary to narrow the accuracy gap
caused by AoA response of reported phase.

3) Aperture Position Error Compensation: As aforemen-
tioned, the performance of synthetic aperture RFID localiza-
tion depends on the aperture point position accuracy. Based
on the linear guide, we add different zero-mean Gaussian
noise on the antenna position reported by the linear guide to
simulate the aperture point position error. As shown in Fig.
7(d), PEC is robust to the aperture point position error. We
also add accumulated error whose value linearly increases to
0.05 m or 0.10 m and results are also depicted in 7(d). The
accumulated error is more harmful, but PEC can compensate
for the aperture position error effectively. The zero-mean
Gaussian noise is incoherent at different aperture points, so
the position error compensation of PEC is more effective.

4) Number of Aperture Points: The previous experiments
usually have 20 aperture points. It is worth investigating
the performance of PEC with more sparse aperture points.
Dense tags and a high-speed AGV are common in many
scenarios. For the 1 m aperture length in previous book
localization experiments, we down-sample the reported phase
data to evaluate system performance. As depicted in Fig. 7(e),
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Fig. 7. Several benchmarks for PEC.

PEC with more aperture points has less localization error. By
utilizing compressed sensing for localization, PEC can still
achieve satisfactory accuracy with few aperture points. Even
if there are only 5 aperture points, the mean error is 7 cm and
20 cm in lateral and radial direction respectively. Thus, the
number of aperture points is not a crucial factor for our system,
and the down-sampling along the aperture can be leveraged to
reduce the computational burden.

5) Interference: As aforementioned, the interference such
as noise and multi-path distortion can be weakened by each
other in coherent reconstruction. It is difficult to carry out
a quantitative analysis on the impact, so we utilize an extra
reader with ten interference tags in the interrogation zone and
two metal reflectors to enhance noise and multi-path distortion
respectively. Two metal reflectors are randomly placed, one
is near the reader antenna while the other is near tags. As
depicted in Fig. 7(f), the accuracy of this situation is almost the
same as before. PEC is insensitive to the interference, which
is different from one aperture point to another and can be
canceled out for each other.

D. Discussion

The proposed method differs from previous synthetic aper-
ture RFID systems in three aspects. First, PEC can effectively
handle the gap between the known aperture position and
the actual one to achieve the reliable localization result by
alternately estimating both the tag position and the aperture
position error. Second, the AoA response of the reported phase
is normalized in PEC, which can improve the accuracy. Third,
PEC leverages compressed sensing and multi-frequency to
localize RFID tags, so the interference and noise are further
suppressed. Unlike other solutions to (9), such as orthogonal
matching pursuit [14], StWGP has much smaller computation
burden and fewer iterations. Although the experimental results
are promising, PEC still has some limitations. Its latency is
a little longer because of heavy computation compared to
the state-of-the-art systems. The iterative algorithm could be

optimized with some prior knowledge of the aperture position
error. In addition, using a 2D aperture with two orthonormal
trajectories, better accuracy in the radial direction can be
expected.

V. RELATED WORKS

Our work is standing on the shoulders of previous works
and draws inspiration from them.

A. Phase-based RFID localization

Received signal strength is adopted for localization at first,
which is coarse-grained and unstable for RFID. Fortunately,
fine-grained phase information reported by modern RFID
devices offers opportunities for accuracy localization systems
[20], [30]–[35]. However, a higher accuracy usually needs
extra cost such as special devices, multiple devices, an ex-
tra learning phase and so on. Inspired by the secondary
radar, synthetic aperture RFID localization with the inverse
correlation filter is proposed [9]–[13]. The relative motion
between the reader antenna and the tag construct a virtual
antenna array to eliminate position ambiguity caused by the
periodicity of reported phase. Existing synthetic aperture RFID
localization systems achieve cm-level accuracy with a mobile
RFID antenna [9], [10], [13] or a mobile tag [11], [12], [14] or
multi-path profiles [15], [16]. In these systems, the hologram is
usually used for result representation. However, the difference
between the real trajectory (aperture) and the assumed one will
lead to localization error due to the inaccurate aperture points
in the reconstruction. PEC is inspired by above works but goes
further by considering aperture position error compensation.

B. Synthetic Aperture Radar

Based on the prior knowledge of the target scene, com-
pressed sensing is used for SAR imaging [19], [36] with a
much lower sampling frequency, but this kind of SAR imaging
is a nonlinear reconstruction with a huge computational bur-
den. Due to the individual signal waveform type, compressed



sensing in synthetic aperture RFID localization is different,
especially when PEC only needs to get the position of the
maximum non-zero reflection coefficient. The motion compen-
sation such as phase gradient autofocus algorithm is common
for airborne and spaceborne SAR [17]–[19], but they usually
describe the relative motion using a single motion model with
determinable parameters or treat the aperture position error as
a part of the measured phase error or compensate for phase dis-
tortions with burdensome computation. Encouraged by these
systems, PEC further develops a COST RFID localization
system with aperture position error compensation.

VI. CONCLUSION

We design and implement PEC, an accurate synthetic aper-
ture RFID localization system with aperture position error
compensation. After detailed theoretical analysis, PEC for-
mulates the localization problem as a joint optimization one.
It alternately estimates the tag position based on compressed
sensing signal recovery and the aperture position error based
on the gradient-based optimization method. PEC is also en-
hanced with the relative phase and phase calibration based
on AoA response of reported phase. Extensive experiments
with COTS RFID devices prove that the tag position can be
estimated accurately with aperture position error. Our future
work will focus on higher accuracy in the radial direction, less
computational burden and performance improvement with the
prior knowledge of the aperture position error.
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[36] M. Çetin and W. C. Karl, “Feature-enhanced synthetic aperture radar im-
age formation based on nonquadratic regularization,” IEEE Transactions
on Image Processing, vol. 10, no. 4, pp. 623–631, 2001.


