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ABSTRACT
In recent years, radio frequency identification (RFID)-based ap-

proaches have been demonstrated to be a promising indoor local-

ization techniques for many valuable applications, such as tracking

tagged objects on the manufacturing lines, locating items in smart

warehouses, and so on. In the near future, many applications will

gain great benefits from knowing the positions of RFID-tagged ob-

jects. However, existing localization approaches often suffer from

severe accuracy degradation in real-world environments due to

the prevalent environmental interferences, such as the multipath

effects. To this end, we designed an RFID-based localization sys-

tem FaHo, which leverages a deep learning enhanced holographic

technique for locating RFID tags accurately even in complex indoor

environments. By carefully analyzing the features of the traditional

holographic method, we created a new hologram-based algorithm

called joint hologram, which yields a robust likelihood for each as-

sumed position to be the true tag position. FaHo then adopts a deep

convolutional neural network for analyzing the whole hologram,

and subsequently estimate the true location of the RFID tag rather

than simply seek for the largest-likelihood location. Furthermore,

we implemented FaHo and evaluated its performance in several

multipath-rich scenarios. The experimental results show that FaHo

can achieve centimeter-level accuracy in both the lateral and radial

directions using only one moving antenna. More importantly, our

work also demonstrates that hologram-based localization is a highly

effective technique for RFID indoor localization tasks.

CCS CONCEPTS
• Networks → Location based services; • Human-centered com-
puting → Ubiquitous and mobile computing systems and tools; •
Computer systems organization → Sensors and actuators.
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1 INTRODUCTION
With the widespread deployment of wireless devices, indoor local-

ization has become a key technique inmany Internet-of-Things (IoT)

applications. As an important building brick of IoT, radio frequency

identification (RFID) technology has received significant attention

in both academia and industry. RFID-based localization systems

could obtain accurate spatial information from many objects with

low-cost and easily-deployed RFID tags attached. RFID technolo-

gies can help to track inventories as they move along the conveyor

belt with several static antennas in next-generation manufacturing,

and they can help find the misplaced books or commodities using

an automated robot equipped with an RFID reader in smart libraries

or supermarkets.

Inspired by these important IoT applications, many state-of-the-

art works have proposed many fine-grained localization approaches

for accurately estimating the locations of RFID tags. Pioneer works

[16, 21, 33, 35] have adopted hyperbolic positioning methods or

the angle-of-arrival (AoA) of the received signal-based methods

for determining the positions of tagged objects. Later systems [19,

22, 24, 34, 38] have leveraged the concept of the synthetic aperture

radar (SAR) or inverse SAR (ISAR) by simulating virtual antenna

arrays to locate RFID tags and achieved promising positioning

accuracy (cm-level and evenmm-level in some cases).

However, there are inevitable multipath effects generated by

nearby reflectors (especially metal objects) in real-world RFID ap-

plication scenarios, which undermine the received signal metrics

(e.g., RSSI and phase) and bring huge challenges for the localization

accuracy of RFID localization systems. PinIt [34] employs refer-

ence tags and multipath profiles for misplace objects localization.

Hologram-based method Tagoram [38] considers the effect of ther-

mal noise and diminishes the impact of extra phase shifts introduced

by different RFID tags through a differential advanced method, yet

it may still fail to maintain high precision when prevalent multipath

reflections exist. Later, MobiTagbot [24] proposes an innovative

multipath suppression technique for creating relatively robust holo-

grams with multiple carrier frequency data and obtaining certain ac-

curacy improvement. However, to date, the fundamental challenge

for the localization accuracy of the RFID systems is still uncertain

environmental interferences, such as ubiquitous multipath effects.

In general, we could combat this challenge and achieve higher

precision by increasing the number of deployed or virtual RFID

antennas for better robustness. However, this method would in-

crease the cost and difficulty of deployment for RFID localization

systems. Hence, we may need a more effective approach. So how

https://doi.org/10.1145/3356250.3360035
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(a) Example 1 (b) Example 2

Figure 1: Radio frequency holograms. Each pixel value in
the hologram represents the likelihood of how its corre-
sponding position is likely to be the true position of the
target tag. Yellow values represents larger likelihoods while
blue ones represent smaller likelihoods. Red star indicates
the true location of the target tag.

can RFID tags be located accurately with minimal resources in indoor
environments where prevalent multipath effects exist?

In this paper, we present FaHo, a fine-grained RFID localiza-

tion technique that combines the synthetic aperture concept and

machine learning algorithm to locate RFID tags with high preci-

sion using only one antenna, even in multipath-prevalent indoor

environments. The key insight is using a machine learning algo-

rithm to suppress the impact of environmental interference and

improve the positioning accuracy of the RFID-based holographic

technique. To achieve this, we propose a new hologram and an

effective hologram-based position estimation method for multipath

suppression, which are inspired by several crucial findings from

RFID-based holographic localization technique.

As illustrated in Figure 1, we give two examples of holograms

generated by the phase measurements of RFID signals using the

algorithm in [19]. The first clear finding is that the true position

of the RFID tag can yield a larger likelihood than most other posi-

tions can. Second, not only the likelihood of the tag position but

also its nearby positions could provide relatively larger likelihoods

compared with the remaining positions. Third, in addition to the

position with the largest corresponding likelihood, the overall dis-

tribution changes as the tag position changes. In other words, the

distributions of probability in holograms, as well as the largest-

likelihood position, could reveal the true position of the target tag.

For example, there are always some symmetrical side lobes around

the main lobe, and the true position is always located in the central

area of the ellipse-like main lobe. These observations show that

these holograms contain some common patterns that are highly

related to the tag location.

Inspired by the key observations outlined above, we designed

FaHo, where the name refers to taking full advantage of holograms.

The key idea is to make full use of the valuable probability distribu-

tion patterns contained in the generated holograms to mitigate the

effects of environmental interference. Based on this pivotal point,

we propose several techniques and make the following contribu-

tions:

• We propose an original RFID-based holographic localization

method, called joint hologram, which gives a more robust and

effective likelihood for each assumed position by considering

the performances of both the assumed position and its nearby

positions. In addition, we combine phase profiles of multiple

frequencies into a single hologram for further performance

improvement;

• We treat holograms like images and construct a deep con-

volutional neural network (CNN) for analyzing the whole

holograms and estimating the accurate position of the target

tag. We transform the localization problem to a regression

one and create massive low-cost simulation data instead of

time-consuming experimental data to train the CNN. Some

noise are also added in the simulation data to make our

estimation method more robust;

• We implement a prototype of FaHo and systematically evalu-

ate its localization performance under indoor environments.

Two case studies, including ordering and reconstruction,

are conducted to comprehensively measure FaHo’s end-to-

end capability in practical application scenarios. The experi-

mental results prove that FaHo can remarkably outperform

existing state-of-the-art schemes in terms of localization

accuracy.

The rest of our paper is organized as follows: We first present the

basic knowledge and preliminary studies in Section 2. The detailed

design is described in Section 3, while the implementation is given

in Section 4. Section 5 and Section 6 evaluate the comprehensive

performance of FaHo. We make discussion in Section 7 and review

the related work in Section 8. Finally, we conclude our work in

Section 9.

2 BACKGROUND
2.1 Challenge
RF Phase. In our paper, we mainly focus on the RF phase, which

is a common indicator supported by COTS readers and is relatively

sensitive to the signal propagation distance. When an antenna inter-

rogates the UHF RFID tags, the RFID reader can capture the several

information indicators of the received backscatter signals. As one

of these indicators, the reported phase value can be expressed as

[7]:

θ = (2π ×
2d

λ
+ ϕ) mod 2π (1)

where λ is the wavelength and the d is the distance between the

reader antenna to the target tag. And ϕ is phase offset introduced

by RFID tag, reader characteristics and environmental noise. It is

easy to prove that phase value θ is a periodic function, with period

2π and it is related to the frequency of the radio signal.

Empirical Study. We conduct an empirical study for probing

into the effects of the environment on the phase offset ϕ. We adopt

the same RFID devices (including RFID tags, antenna, and reader)

under the same setting in two different scenarios. As shown in

Figure 8, the first scenario is an open space, while the second one is

filled with various objects (including metal objects, which introduce

strong multipath effects). The antenna interrogates RFID tags with

known locations at 50 consecutive measuring points and collects

about 50 corresponding phase values. All the phase offsets in Figure
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Figure 2: Impact of multipath refection. (a) Samples 1 − 3

are collected in a clean environment, while samples 4 − 6 is
gathered in a multipath-rich environment.

2(a) equal to unwrapped measured phases minus the corresponding

theoretical ones with an extra offset for a better demonstration.

We find that the phase offsets in the clean environment are highly

stable and approximately equal to a constant. However, there are

significant differences between the calculated phase offsets in the

multipath-rich environment.

The reason is that the received signal is a superposition of radio

signals from both path A and path B when multipath reflection

exists as illustrated in Figure 2(b). The signal of propagation path

B subsequently causes an extra offset on the received phase value.

Therefore, environmental interference such as multipath reflection

could have a big impact on received signals, and the uncertain phase

offsets bring enormous challenges for accurate RFID-based indoor

localization. In this paper, we focus on locating RFID tags in the

scenarios where the most received line of sight (LOS) signals are

stronger than the non-LOS (NLOS) ones.

Another curse in RFID-based SAR localization technique is that

the radial accuracy is much poorer than the lateral one. This can

be seen intuitively in Figure 1, in which the resolution in the radial

direction (y-axis) is much worse than that in the lateral direction

(x-axis). According to our experimental results, existing state-of-

the-art works can achieve cm-level lateral positioning accuracy

but dm-level accuracy in the radial direction. Thus, the second

challenge is how to reduce the radial localization error and mitigate

such accuracy mismatch between the two direction?

2.2 Convolutional Neural Networks
The convolutional neural network (CNN) is one of the most com-

monly used deep neural network structures, and is widely used

in many applications, including image recognition [29, 31], object

detection [5, 23], semantic parsing [6, 17], and many other valuable

tasks [11, 40]. Different from fully-connected deep neural networks,

CNN applies small kernels to capture the spatial dependencies in

images efficiently, which accelerates computation and improves the

training efficiency significantly.

3 DESIGN
3.1 Problem Definition
First, we review the basic mechanism of the holographic SAR tech-

nique and give the definition of RFID-based localization problem.

(a) SAR illustration (b) Joint hologram

Figure 3: Illustrations for holographic SAR based localiza-
tion. Black and red points indicate the position of target
tag and virtual antennas respectively. Blue region represents
the surveillance plane. (b) The yellow region represents the
kernel region of a supposed point and orange points are the
centroids of its neighboring girds.

Note that we only consider locating target tags in a two-dimensional

plane since our system only adopts one antenna. Suppose an an-

tenna moves along a specific trajectory, which is known as a syn-

thetic aperture, to interrogate the target tag T (xt ,yt ) at different
measuring points Am on multiple frequencies, as illustrated in Fig-

ure 3(a). In our paper, we define the positive direction of x andy axis

as the lateral and radial direction respectively, while the positive

direction of x is the moving direction of the antenna. Let a vector θ
with a length ofM denote the phase measurements, where the item

θ (m)
represents the received phase collected at themth

measuring

point Am on one frequency. We then define a P ×Q hologram H
using the following image:

H =


h1,1 · · · h1,Q
...

. . .
...

hP ,1 · · · hP ,Q

 (2)

where each pixel hp,q maps to a corresponding grid Sp,q in the

two-dimensional surveillance plane S . If we use Zp,q to represent

the centroid of grid Sp,q , then the theoretical phase value of Zp,q
collected at Am can be expressed as

θ (m)
p,q =

4π

λ
× d(Zp,q ,Am ) (3)

where d(Zp,q ,Am ) stands for the Euclidean distance between Zp,q
and Am . Let hp,q indicate the likelihood that the target tag T is

located at Zp,q , which can be formulated as:

hp,q = L(θ ; Zp,q ) , Zp,q ∈ S (4)

where L is an abstract likelihood function. Therefore, we could for-

mally define two problems in RFID-based holographic localization.

Problem 1. Given θ , A and S , how to design an effective function
L that can output the maximal value for the nearest grid to the target
tag location T and give smaller values for other grids?

After solving the first problem, we can use L to generate a

hologram H , whose element indicates the possibility that its cor-

responding position is the true position of tag T . We then face the

second problem.
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Problem 2. Given H with corresponding S , how to estimate the
target tag position T ?

In the remaining part of the design, we will elaborate on the

solutions of these two problems in FaHo.

3.2 Joint Hologram
For the first problem of holographic localization for RFID tags, we

propose joint hologram based on the traditional hologram.

HologramComparison. Previous studies [19, 24, 38] have pro-
posed many fine-grained functions that can be formulated in the

following equation:

hp,q = F (Zp,q , θ , A) (5)

The key insight of these functions is measuring the similarity be-

tween measured phases and theoretical ones of each supposed

position since they should be similar if the supposed position is

the true tag position. However, we also observe that not only the

likelihood of tag position but also its nearby positions could get

relatively larger likelihoods. Based on this point, we design a joint

hologram, whose function L considers the performance of both

Zp,q and its nearby locations when calculating likelihoods:

hp,q = F (Zp,q , θ , A) · G(Ẑp,q , θp,q , A) (6)

where G is a function of Ẑp,q , which represents the centroids of

grids around Zp,q . As shown in Figure 3(b), all the orange points

are centroids included in Ẑp,q , and the yellow region is called kernel
region in this paper.

Basic Hologram. The definition of function F (Zp,q , θ , A) is
first introduced. We start with a set of functions defined to calculate

the likelihood of Zp,q :

H(ϑ,Zp,q ) = R(ϑ,Zp,q ) ×W(ϑ,Zp,q ) (7)

R(ϑ,Zp,q ) =
1

M
|

M∑
m=1

e j (ϑ
(m)

−θ (m)
p ,q ) | (8)

W(ϑ,Zp,q ) =
ϑ · θp,q

∥ϑ ∥
2
×


θp,q



2

(9)

where j denotes the imaginary number and ϑ indicates either mea-

sured or theoretical phase values. We skip the explanation of the

former formulas first and directly define a basic hologram using

following equation:

hbp,q = H(θ ,Zp,q ) (10)

For more intuitive explanation, we compare the performance of the

true tag position and several fake positions in Figure 4. As shown in

Figure 4(a), since LOS signals received at the most of aperture points

are stronger than the NLOS ones, all θ (m) − θ (m)
p,q would be evenly

distributed between 0 and 2π if the centroid of a grid is not the

actual tag position despite the received phases θ contains the phase

offsets introduced by multipath reflections. As a result, all complex

signals e j (θ
(m)

−θ (m)
p ,q )

will have different directions, and R(θ ,Zp,q )

is a small value. In contrast, all θ (m) − θ (m)
p,q would be distributed

in a limited range if the target tag is located at the grid, resulting in

a large R(θ ,Zp,q ). As Figure 4(b) shows, if Zp,q is the ground truth,

the values of the measured phases and theoretical ones would be
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Figure 4: Comparison between the performances of true and
fake positions. (a) Phase offsets equal to the remainder of
the difference between the measured and theoretical phases
divided by 2π . (b) Values of themeasured phases, theoretical
phases of true and fake positions.

similar and have the same trend despite extra phase offsets exist in

the measured phases, leading to a larger W(ϑ,Zp,q ). Otherwise,
the huge difference between the measured and theoretical phases

would cause a small W(ϑ,Zp,q ). Therefore, we could also easily

find out which grid cells are most likely to cover the real position

of the target tag.

We provide two samples of different holograms in Figure 5. The

first is generated by Equation 10 without extra weightsW(θ ,Zp,q ),
and it is called naive hologram in this paper. The largest-likelihood

position could indicate the rough position of the ground truth but

there are still some localization errors, especially in radial direction.

Different from the naive hologram, the resolution of basic holo-

gram has been advanced remarkably. There is another interesting

phenomenon in that the hologram seems to be sliced into different

blocks. Moreover, the effect of segmentation is pretty outstanding

in the radial direction around the ground truth, which results in

better radial resolution for basic hologram.

Joint Hologram. Now we give the definition of a more robust

likelihood for each grid by utilizing the performance of its neigh-

boring grid cells. Suppose a kernel region centered on Zp,q covers

(2K + 1) × (2L + 1) cells. For instance, K and L are both 2 in Figure

3(b). We use a (2K + 1) × (2L + 1) matrixCAp,q to denote the real

likelihoods of all grids in the kernel region:

CAp,q =


H(θ , Zp−K ,q−L) · · · H(θ , Zp−K ,q+L)

...
. . .

...

H(θ , Zp+K ,q−L) · · · H(θ , Zp+K ,q+L)

 (11)

Then, we define a matrixCTp,q of the same size for representing

the theoretical likelihoods of the grids in the kernel region if Zp,q
is the true tag location, which is expressed by:

CTp,q =


H(θp,q , Zp−K ,q−L) · · · H(θp,q , Zp−K ,q+L)

...
. . .

...

H(θp,q , Zp+K ,q−L) · · · H(θp,q , Zp+K ,q+L)

 (12)

Note that CAp,q and CTp,q are different because the input of H

in CAp,q compromises measured phases, whereas that in CTp,q
involves theoretical phases. Next, we treat CAp,q and CTp,q as

two random variables, and each element ofCAp,q corresponds to



FaHo SenSys ’19, November 10–13, 2019, New York, NY, USA

(a) Naive hologram (b) Basic hologram (c) Joint hologram

Figure 5: Comparison of different holograms. Red stars indicate largest-likelihood location, while gray squares stand for the
real position of tag. (a) Naive hologram generated using Equation 10 without W, (b) basic hologram. (c) joint hologram with
a kernel region of 11cm × 11cm.

the element ofCTp,q with the same corresponding grid. We then

define joint hologram usingCAp,q andCTp,q :

hp,q = ρ(CAp,q ,CTp,q ) × hbp,q (13)

where ρ(CAp,q ,CTp,q ) is the Pearson correlation coefficient [2]

between CAp,q and CTp,q , which is a value ranging between −1

and 1, measuring the strength of the linear relationship between

two random variables. Similar to the former explanation, if Zp,q is

the true tag position, the correlation coefficient and hbp,q would

theoretically have a maximum 1 since there is a positive correlation

between CAp,q and CTp,q . Conversely, they would be relatively

smaller values when the position of the target tag and Zp,q are far

apart, leading to a much smaller hp,q . Note that, for the grids near
the edges that don’t have enough neighbor grids, we adopt kernel

regions with dynamically adjusted sizes.

Different from the traditional holograms, each likelihood in the

joint hologram utilizes both the similarity between the theoreti-

cal and measured phase values of its corresponding grid and the

similarity between theoretical and actual likelihoods of all grids

in the kernel region. In other words, not only the performance of

the assumed position is considered in the joint hologram, but also

the performance of its neighbor positions. Figure 5(c) depicts an

example of a joint hologram. It is obvious that the resolution in

the joint hologram has been further improved, especially in lateral

direction compared to basic hologram shown in Figure 5.

Finally, we can extend joint hologram to a multi-frequency one

based one for better robustness [24] using following equation:

h′p,q =
1

F

F∑
f =1

h
(f )
p,q (14)

where h
(f )
p,q means the likelihood of Zp,q calculated by f th fre-

quency phase measurements.

Kernel Region. Intuitively, the performance of joint hologram

would boost as the kernel region enlarges because each likelihood

takes into account more information about its neighbor grids. But

it turned out to be incorrect in practice. In fact, the real goal of

joint hologram is to optimize the likelihood of the grids around

the ground truth and make sure that the true grid can obtain a

higher likelihood than others. For those grids around the ground

truth, larger kernel region would cover more unstable likelihoods

when strong environmental disturbances exist, leading to unstable

weights for hp,q . Therefore, a larger kernel region might cause a

counterproductive outcome. Based on the experiment results in

Section 5, we prove that a smaller kernel region is more suitable

for a multipath-rich environment.

Computation Optimization. The computational complexity

of calculating likelihoods in a basic hologram is O(M), while the

computational complexity in a joint hologram is O(MKL). The time

cost (minute-level calculating time for a 1m2
surveillance plane with

100× 100 grids and 5× 5 kernel region) of creating a joint hologram

is unacceptable. Fortunately, we find most of the time is spent on

calculating the theoretical phase values and likelihoods in the kernel

region for each grid, which could be reused to reduce time cost.

Although there may exist signal loss, which means the number of

phase measurements is smaller than we expected, it only occurs

at a few aperture points according to our experimental results.

Therefore, we store the theoretical phase profiles and likelihoods

in the kernel regions in a hash table and reuse them to generate

holograms for a new tag. This is a classic optimization method that

reduces the time complexity by sacrificing space complexity.

3.3 Position Estimation
Next, we introduce the solution for the second problem on how to

estimate the target tag position based on generated holograms.

Estimation Comparison. Previous research [19, 24, 38] has

selected the position with the largest likelihood as the true posi-

tion, which is the typical maximum likelihood estimation [37] and

only focuses on the position with the largest likelihood. It utilizes

little information in the hologram and does not consider how other

positions perform that may be susceptible to environmental in-

terference because the likelihood of a single position is probably

unreliable. We could find that there are still some estimate errors

in Figure 5(c).



SenSys ’19, November 10–13, 2019, New York, NY, USA Xu, et al.

(a) Ideal hologram 1 (b) Real hologram 1

(c) Ideal hologram 2 (d) Real hologram 2

Figure 6: Comparison between ideal holograms and real
ones. Ideal holograms are generated from simulation phases
with no noise, while real holograms are generated from ex-
perimental data. Red stars indicate largest-likelihood loca-
tions, while black squares stand for the true positions.

Based on the aforementioned analysis in Section 1, we could

design a more effective estimate method by fully utilizing valu-

able patterns in holograms. Inspired by applications of deep neural

networks in computer vision, we treat holograms as images and con-

struct a CNN to analyze the whole hologram for accurate position

estimation.

CNN Functionality. By carefully observing the likelihood dis-

tribution in the joint hologram, we find two common patterns under

our experimental setting, which can be seen intuitively in Figures

5(c) and 6:

• The unique main lobe surrounded by the symmetrical side

lobes is partitioned into three or more strong spots;

• Only the spot second closest to the synthetic aperture covers

the true tag location.

Meanwhile, although the joint hologram yields optimized likeli-

hoods, the extra phase offsets introduced by multipath reflections

can still affect the likelihood distribution in holograms. As shown

in Figure 6, we observe two possible effects:

• Side lobe disturbance. Compared with ideal hologram 1, the

side lobes in real hologram 1 are stronger;

• Main lobe ambiguity. Other spots in the main lobe may have

larger likelihoods than the target spot does.

To tackle these problems, we could train the CNN and let it learn

to recognize the main lobe and locate the spot second closest to the

synthetic aperture by learning the common patterns. For example,

after learning the first pattern, CNN can recognize the main lobe,

and the first effect side lobe disturbance can be suppressed. CNN

can also handle the issue of main lobe ambiguity after learning the

second pattern. In fact, the functionality of CNN in FaHo is similar

to classical tasks in object detection (e.g. recognize human faces

and locate them in images) and extensive literature [5, 23] have

proven that CNNs can achieve super performances in these tasks.

Neural Network Structure. As illustrated in Figure 7, we de-

sign a 12-layer deep neural network. The estimate problem is trans-

formed into a regression problem in FaHo. Therefore, the CNN is

trained to predict the exact coordinates of the target tag instead of

the gridwhere the tag is located. In FaHo, the input layer is an image-

like fixed-size joint hologram generated by multiple-frequency data

using Equation 14. Constructed upon input layer are three convo-

lution layers, which adopts sets of learnable filters to extract the

high-level representation of the input data. Their kernel sizes are

5× 5× 16, 5× 5× 32 and 3× 3× 16, with the same stride of 1 in both

the vertical and horizontal directions. Zero paddings are added in

the convolutional layers for maintaining the dimensions of output.

Rectified Linear Unit (ReLU) layer is built upon each convolution

layer, which provides fast and effective training for the network

and is widely used in CNN[14]. Different from ReLU layers, which

don’t change the size of the input, the Max-pooling layers with the

size of 3 × 3 kernel and strides of 2, 2, and 1, significantly simplify

the connections to the following layers.

A dropout layer is constructed upon the last convolutional layer

to help prevent overfitting [13]. In the training stage, each unit in

the dropout [30] layer will be dropped with probability 1 − p for

the network simplification. At the test times, the outgoing weights

of this unit will be multiplied by p. After dropout layer, there are
four fully-connected layers, which connect all neurons to those

of the previous layer. There is also ReLU layer between each two

fully-connected layers. The last layer contains two units, which

stand for estimated lateral and radial coordinates.

TrainingMethod. The training objective of the neural network
is to reduce the error between the estimated coordinates and the

ground truth. Since we regard the estimation position problem as a

regression one, mean square error (MSE) is leveraged to define the

loss function:

loss =
1

N

N∑
i=0

∥T̂i −Ti ∥
2

(15)

where N is the number of mini-batch, while T̂ and T represent the

estimated position and true position respectively. In the training

stage, we adopt Adam [12] optimization algorithm for parameters

updates.

Instead of conducting a large number of experiments for gather-

ing training dataset, we make it using simulation phase measure-

ments. To make our model obtain good robustness and tolerate

noise well, we add random Gaussian phase offsets to the theoretical

phases of each target tag, whose position is randomly selected from

a fixed surveillance plane. To mimic the effects of environmental

noise as much as possible, we gather a small amount of experi-

mental data and calculate the variance of phase offsets collected at

each experiment. We then refer to that variance and determine the

parameters of the Gaussian noise distribution. Moreover, the model

is selected through a small validation dataset, which is a subset of

the experimental dataset. The selected model is eventually tested

on the remaining experimental data.
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Figure 7: Deep neural network structure in FaHo.

4 IMPLEMENTATION
Hardware. The prototype is implemented with COTS UHF RFID

devices, including a set of Alien
1
ALN9662 passive RFID tags, one

Laird
2
S9028PCR RFID antenna, and an ImpinJ

3
Speedway R420

RFID reader. The reader works at a frequency band 920.625 −

924.375MHz and is programmed to hop over eight channels with a

step of 0.5MHz. The antenna is fixed at a linear guide moving at

a speed of 0.05m/s with a length of 1m. The reader connects to a

PC equipped with Intel(R) i5 − 8500 CPU, 16 GB of RAM and an

NVIDIA GeForce GTX1060 6GB GPU.

Software. There are two components in the software of FaHo.

The data collection component is implemented in C#, which com-

municates with the RFID reader through a low-level reader protocol

(LLRP) and controls the movement of the linear guide simultane-

ously. The data analysis component implemented in Python pro-

cesses the raw data and estimates the positions of scanned tags. The

CNN in the data analysis component is constructed on Tensorflow

[1] 1.9.0 with cuDNN.

5 EVALUATION
In this section, we make an exhaustive comparison between FaHo

and three state-of-the-art works, followed by several benchmarks

presented to provide insights into the effects of different factors on

the performance of FaHo.

5.1 Experimental methodology
Scenario. We conduct experiments in two different indoor environ-

ments, as shown in Figure 8. The first experimental environment is

a laboratory, which is a multipath-low scenario, since there are few

objects nearby generating multipaths. In contrast, the second ex-

periment is conducted at an RFID laboratory where there are many

metal objects, representing a classic multipath-prevalent scenario.

In addition, the antenna mounted at the linear guide interrogates

tags at 50 aperture points. We adopt the same RFID devices with

identical setting in these two scenarios and collect about 100 sam-

ples for each scenario.

Dataset. As mentioned before, we adopt simulation data for

training our neural network. As in the experimental setting, we

1
https://www.alientechnology.com/

2
https://connectivity.lairdtech.com/

3
https://www.impinj.com/

(a) Scenario 1 (b) Scenario 2

Figure 8: Experiment scenarios. (a) Multipath-low scenario.
(b) Multipath-rich scenario.

simulate phase measurements for 50 aperture points distributed

uniformly in a 1−m synthetic aperture. Moreover, randomGaussian

noises added to all the points have identical averages and standard

deviations in each simulation experiment. The standard deviation

of noise for each experiment is also stochastic, and the average

standard deviation of all experiments is 0.5. In contrast to previous

multiple-frequency model, we use a single-frequency simulation

holograms. And four frequencies are selected to simulate the phase

profiles. The position of target tag is also randomly selected in the

1m × 1m surveillance plane, with a precision of 0.001m. In total, we

create a training dataset with 10, 000 samples (100×100 holograms).

Validation and test dataset are both holograms generated by

the real data collected in the former environments. The validation

dataset is a randomly selected subset of the initial experimental

dataset, and the sample size is 10. The remaining samples belong to

test dataset. The datasets of two scenarios are independent of each

other, and we train two different models for them since the effect

of environmental interference is different in each scenario.

Metric. In the evaluation part, we mainly focus on localization
error or positioning error, which is the absolute value of distance

difference between estimated and true position. There two types

of error, namely, lateral error and radial error, denoted as ex =
| |p̂x − px | | and ey = | |p̂y − py | | respectively.

5.2 Accuracy among different schemes
We also implement RF-Scanner [15], Tagoram [38] (DAH algorithm),

and MobiTagbot [24], which are fine-grained RFID localization
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Figure 9: Accuracy comparison in scenario 1.
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Figure 10: Accuracy comparison in scenario 2.

schemes. RF-Scanner [15] derives the tag position by curve fitting

the hyperbola pattern on the phase profiles while DAH [38] andMo-

biTagbot [24] are both holographic SAR schemes. Since RF-Scanner

[15] and DAH [38] are single-frequency localization models, we

regard multiple frequency data as multiple virtual antennas and

extend them to multiple-frequency models. We run these three

algorithms and FaHo on the same datasets for fair comparisons.

It is worthmentioning that Tagoram andMobiTagbot can achieve

cm-level precision since we adopt cm-level discretization holograms.

However, RF-Scanner and FaHo can achieve higher precision be-

cause the localization problem is transformed into a parameter

estimation or regression problem. Therefore, there are apparent

zigzag patterns in the cumulative distributed function (CDF) of

Tagoram and MobiTagbot’s localization errors, as shown in Figure

9 and 10.

Figure 9 plots the results of the positioning accuracy in the first

scenario. Previous three schemes achieve 90th-percentile lateral

errors of 5.40cm, 4.00cm, 4.00cm, and 90th-percentile radial errors

of 29.44cm, 23.00cm, and 22.00cm in the first scenario. At the same

time, FaHo has a 90th-percentile error of 2.48cm in the lateral di-

rection, outperforming RF-Scanner, Tagoram and MobiTagbot by

2.17×, 1.61×, and 1.61× respectively and a 90th-percentile error

of 12.13cm in the radial direction, which is 17.31cm, 10.87cm, and

9.87cm lower than others, respectively. These results clearly demon-

strate that FaHo successfully achieves better performance in the

multipath-low scenario.

Next, we analyze the localization accuracies of the four schemes

in the second scenario. As illustrated in Figure 10, RF-Scanner

achieves 90th-percentile errors of 7.78cm and 36.32cm in the two
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Figure 11: Accuracy comparison among different holograms.
The error bar specifies the average error and the standard
deviation.

directions. Tagoram considers the thermal noises and achieves av-

erage errors of 10.00cm and 32.30cm, but these accuracies are far

lower than the results reported in [38]. The reasons for this include

the presence of prevalent multipath effects and reduction in the

number of aperture points. MobiTagbot obtains some accuracy im-

provements through a novel multipath suppression algorithm and

has similar accuracy values to Tagoram, at 13.30cm and 28.00cm
respectively. However, FaHo achieves a 90th percentile lateral error

of 5.64cm, which is smaller than the errors of the other schemes.

Moreover, the radial average error of FaHo is 14.53cm, outperform-

ing previous schemes by 2.50×, 2.22×, and 1.92× respectively. This

improvement is due to its ability to handle the disturbance caused

by the multipath reflections.

The average lateral and radial errors of FaHo are 1.31cm and

5.28cm, respectively in scenario 1. In scenario 2, FaHo achieves posi-

tioning accuracies of 2.71cm and 6.96cm in two directions. Based on

these results, we find that FaHo can achieve cm-level accuracies in

both the lateral and radial directions, which significantly weakens

the accuracy mismatch. Comparing the positioning accuracies of

FaHo in two scenarios, we also find that the differences of accuracy

are relatively smaller (1.40cm and 1.68cm in the lateral and radial

direction) compared with the accuracy differences of other schemes.

This demonstrates that FaHo is more insensitive to environmental

interference.

It is obvious that the localization error standard deviation of

FaHo is much smaller than those of the previous three schemes

in these cases, which also demonstrates the stable performance

of FaHo. In summary, our experimental results show that FaHo is

superior to the other schemes in the two scenarios.

5.3 Accuracy among different holograms
In this part, we compare the localization accuracy among three

holograms, namely, the naive, basic, and joint holograms. It should

be noted that we estimate the tag position by directly selecting the

largest-likelihood position for all the hologram in this evaluation.

As shown in Figure 11(a), the joint hologram achieves lateral

average errors of 1.63cm and 3.66cm in the two scenarios, outper-

forming the naive hologram by 1.44× and 1.30× and basic hologram

by 1.30× and 1.40×. For the radial errors illustrated in Figure 11(b),

the joint hologram also obtains higher radial localization accuracy

than the other two holograms in both two scenarios based on the
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Figure 12: Impact of kernel region size. The error bar speci-
fies the average error and standard deviation.

maximum likelihood estimation method. The accuracy improve-

ment in scenario 2 is more outstanding since the joint hologram

is more capable of suppressing multipath effects. Moreover, the

standard deviations of the joint hologram are smaller than those of

the other two in all cases, which shows that the joint hologram has

better robustness. Thus, it is clear that the joint hologram achieves

the best performance based on the maximum likelihood estimation

method. The reason is that joint hologram gives a more robust like-

lihood for each grid by taking full advantages of the performances

of its neighbor grids.

There is a seemingly abnormal phenomenon that the basic holo-

gram achieves lower positioning accuracy than the naive hologram

does in the radial direction under two scenarios. In our opinion, it

cannot prove that the basic hologram is less effective than the naive

hologram is. Based on the previous analysis, the basic hologram

seems to be sliced into several slots, and the largest likelihood is

likely located at the neighboring slot of ground truth. Hence, the

maximum likelihood estimation may introduce an extra localization

error in the radial direction. Therefore, we think that maximum

likelihood estimation is not suitable for basic hologram. And we

show how our convolutional neural network solution outperforms

the maximum likelihood estimation later.

5.4 Accuracy among different kernel region
Next, the impact of kernel region size in the joint hologram is

investigated. We define a tuple (K, L) to represent the values of K
and L in Equation 11. Figure 12 depicts the relationship between the

localization error and size of the kernel region in two scenarios. It is

worth mentioning that we only consider square area kernel region

when comparing different region sizes here. The final positioning

accuracies in the two scenarios show that the overall localization

error decreases and then increases as we continuously enlarge the

kernel region. In other words, either a too large or too small region

will reduce the positioning accuracy. Hence, we need a trade off for

selecting a suitable kernel size.

Another finding is that the best-fit kernel regions in the two sce-

narios are varied due to the different environmental interferences.

Therefore, we fully utilize the validation dataset for comparing the

positioning accuracy in the combined direction of different kernel

regions and select the best-fit kernel region for the two scenarios. In

our experimental setting, the kernel regions are (10, 7) and (5, 4) in

two scenarios, which are equivalent to 21cm×15cm and 11cm×9cm

Table 1: Accuracy definition

Element Value

a1

N: naive hologram

B: basic hologram

J: joint hologram

a2
M: maximum likelihood estimation

C: convolutional neural network method

a3
X: lateral direction

Y: radial direction

kernel region in our experimental setting. Based on our results, a

relatively smaller kernel region (e.g., from (4, 4) to (9, 9)) is more

suitable for a multipath-rich environment.

5.5 Accuracy among different position
estimation methods

In this evaluation, we make a comprehensive comparison between

two hologram-based position estimation methods, namely, maxi-

mum likelihood estimation method and our deep learning method.

To better understand their performance difference, we apply the

two methods on the three holograms used above, including the

naive, basic and joint holograms. We define a symbol a1-a2-a3 to
represent the positioning accuracy obtained by different method

combinations. The first two elements indicate the type of hologram

and position estimation method, while the last element represents

the direction of localization accuracy. Table 1 provides the possible

values of each letter. For instance, N-C-X means the lateral accuracy

obtained using our convolutional neural network for analyzing the

naive hologram and subsequently estimating the tag position.

Figure 13 depicts the positioning accuracies of varied method

combinations in two scenarios. We can compare the performance

of maximum likelihood estimation with our deep convolutional

neural network solution through two adjacent cases. The results

in Figure 13 show that the average positioning accuracies, as well

as their distribution of our deep learning estimation method, are

better than those of maximum likelihood estimation in most cases.

Furthermore, the accuracy improvements in the radial direction are

outstanding.

We also find that the deep learning method remarkably outper-

forms traditional maximum likelihood estimation, especially in the

second scenario, which is a classic multipath-rich environment.

For joint hologram, deep learning method achieves median errors

of 2.27cm and 6.28cm in two direction separately, outperforming

maximum likelihood estimation by 1.32× and 1.43×, respectively.

Moreover, it is clear that the outliers are reduced significantly if

the CNN estimation method is adopted. Such improvement is due

to the full utilization of likelihood distribution in the hologram and

the robustness of our estimation method since we have adopted

noise-added dataset to train it. These results prove that estimating

the tag position by merely relying on the largest likelihood is not a

robust estimation method in multipath-rich environments.

Significantly, we find that the radial errors of the basic hologram

are smaller than those of the naive hologram, which is different
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Figure 13: Accuracy comparison of estimationmethods. The
green asterisk indicates the average error in each case.

from the former result obtained by maximum likelihood estimation.

Therefore, our experimental results prove that the hologram-based

localization method has the potential for more accurate indoor

localization, while the maximum likelihood estimation obviously

fails to live up to such potential.

5.6 Impact of neural network component
Here, we investigate the performance of different neural network

components, including pooling, dropout layer, and normalization.

We tried different pooling methods, and the results are presented

in Figure 14(a). We chose max-pooling in our deep learning model

since it achieves relatively better performance. As shown in Figure

14(b), different keep rates in dropout layer are also compared.We set

keep rate to 0.8 in FaHo. Furthermore, we also tried to add several

Batch Normalization [8] layers to our model. Unfortunately, the

model cannot converge after a Batch Normalization layer is adopted,

so it is highly unsuitable for our localization task. The possible

reason is that it may change the original likelihood distributions in

holograms; accordingly, we have not used it in our model.

5.7 Impact of frequency
Since we utilize multiple-frequency data, it is necessary to check

the performance of FaHo on different frequencies (channels). In

this evaluation, we take the dataset gathered at the second scenario

as an example. We use single frequency phase profiles to generate

joint holograms and then apply our CNN for the position estimation.
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Figure 14: Impact of different neural network components.
The notation 1-X and 2-Y represent the lateral accuracy in
scenario 1 and radial accuracy in scenario 2, respectively.
The same scheme are applied to the other tuples.
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Figure 15: Impact of frequency. The error bar specifies the
average error and standard deviation.

Figure 15(a) depicts the accuracies for eight frequencies. It is obvi-

ous that there is only a slight difference between them. Therefore,

FaHo is irrelevant to frequency and can support frequency hopping

without accuracy loss. Next, the effect of the number of frequencies

is investigated. We randomly choose one, two, four, six channels

out of eight channels and utilize their data to create holograms. As

Figure 15(b) shows, the average localization error decreases sub-

stantially as the number of utilized frequencies increases. Moreover,

the standard deviation reduces stably at the same time, which also

proves that we can advance the robustness of localization model

by combining multiple-frequency data into a single model.

5.8 Time consumption
Finally, we evaluate the execution time of the two processes, includ-

ing hologram creation and position estimation. Table 2 presents

the time consumption of different holograms generated from eight-

frequency data. Time consumption includes the time reading the

raw phase data, data preprocessing, and likelihood calculation. It is

easy to find that the time consumed for each hologram is reduced

significantly with optimization. In addition, the CNN needs little

time (about 50ms for 500 holograms) to predict tag position after

creating holograms. To summarize, it takes about 1.5s to estimate

the tag position through raw phase data, which shows that FaHo

can achieve good realtime performance.
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Table 2: Time consumption of different holograms (unit: s).
BH and JH-(5,5) represent the basic hologram and joint holo-
gram with K = 5 and L = 5.

Model BH JH-(5, 5) JH-(10, 10) JH-(15, 15)

w.o. optimization 0.78 72.38 247.30 503.06

w. optimization 0.74 1.28 1.36 1.44
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Figure 16: Ordering tagged objects.

6 CASE STUDY
In this section, we investigate the performance of FaHo in two

RFID-based localization application scenarios, including ordering

and reconstruction.

6.1 Ordering
Shelf scanning is an important process for inventory management

in a smart warehouse or library; it can also help find the misplaced

objects. Moreover, it is a classic application scenario for RFID-based

localization systems [15, 24, 26, 27, 38]. Therefore, we probe into

FaHo’s performance for ordering RFID tags along the lateral direc-

tion. We conduct ordering experiments in the multipath-prevalent

scenario in Figure 8. In each experiment, we scan eight tags with

spacings varying from 4.3cm to 8.3cm and obtain over 120 orders of

tags. The other experimental configurations are the same as those

in Section 5.

In this paper, we define two metrics of ordering accuracy, named

as hard ordering accuracy and soft ordering accuracy. Hard ordering

accuracy is the most common metric used in the previous studies

[15, 24, 26, 27], which is defined as the ratio of number of correctly

ordered tags to the total number of tags. However, the hard accuracy

is easily affected by outliers, so we define soft ordering accuracy.

Suppose we have a correct sort sequence sc and a predicted one

sp . Soft ordering accuracy is the ratio of the length of the longest

common subsequence between sc and sp to the length of sc . For
example, if the correct sequence is 1-2-3-4-5 and the predicted one

is 1-3-4-2-5, the corresponding hard ordering accuracy is 0.4 while

the soft one is 0.8.

Figure 16 provides the ordering accuracies of RF-Scanner [15],

Tagoram [38], MobiTagbot [24], and FaHo. As the results show,

FaHo identifies the right orders with success rates of 84.4%, 95.3%,

and 100.0% on hard ordering accuracy, outperforming the other
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Figure 17: Reconstruct tagged objects. (a) On the right are
four placements of each cube based on our assumption. (b)
the classification accuracy for different placements.

Table 3: Position feature comparison.

Placement Lateral Position Radial Position

A x2 − x1 ≥ ∆x |y1 − y2 | < ∆y
B |x1 − x2 | < ∆x y2 − y1 ≥ ∆y
C x1 − x2 ≥ ∆x |y1 − y2 | < ∆y
D |x1 − x2 | < ∆x y1 − y2 ≥ ∆y

approaches in most cases. Moreover, FaHo achieves soft ordering ac-

curacies of 90.6%, 98.4% and 100.0%, which are also basically higher

than the accuracies of others. Our experimental results clearly

demonstrate that FaHo is superior to the other schemes in ordering

tagged objects.

6.2 Reconstruction
Recognizing how tagged objects are placed is another important

application for RFID-based localization systems [3, 36]. These sys-

tems can determine the package placement in smart warehouses

[3] or make real-time observations for orientation-sensitive car-

goes in intelligent factories [36]. In this case study, we design an

RFID-based reconstruction method for determining the placement

of tagged objects using the location information of RFID tag arrays.

As shown in Figure 17(a), two tags with a spacing of 8.3cm are

attached on the surface of a 10 × 10 × 10cm3
cube. The rest of ex-

perimental setting is the same as those in Section 5. We assume the

tagged surfaces of the cubes always face the antenna. Hence, there

are four types of placements as illustrated in the Figure 17(a). The

horizontal distance between them is 45cm, and the antenna is 40cm
higher than the plane where cubes are placed is. We summarize

the position features of the tag array for different placements in

Table 3. Here, (x1,y1) and (x2,y2) are the coordinates of the left
and right tag, respectively in placement A. For placements A and

D, there are significant differences in the lateral coordinates of two

tags, while the radial coordinates are similar. In the 3D space, two

tags are on different XoY planes in placement B and D, leading to

some differences in radial distance. ∆x and ∆y are two thresholds

utilized to tolerate some localization errors, which are set to 4cm
and 3cm. Hence, we can discriminate the placement of cubes by

analyzing the difference between the coordinates of the tag array.

We collect 20 experiment samples for each case.
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As illustrated in Figure 17(b), the confusion matrix implies the

high classification accuracy of FaHo that only few cubes are er-

roneously classified into the wrong placement. This high average

accuracy of 90.00% is attributed to the high localization accuracy

in the lateral and radial directions. Meanwhile, the overall classi-

fication accuracies of RF-Scanner, Tagoram, and MobiTagbot are

56.25%, 75.00%, 75.00%, respectively. Therefore, FaHo also remark-

ably outperforms other schemes in this case study.

7 DISCUSSION
In FaHo, we present a joint hologram and a new hologram-based

position estimation method. We believe the basic idea of the joint

hologram that utilizing the performances of the assumed position

and its neighboring positions could be extended to other holo-

graphic SAR techniques (e.g., generating angle-based hologram).

Moreover, it is considered that estimating target indicators by ana-

lyzing the whole hologram could be extended to other holographic

methods. However, there are several limitations and future works

that could be done to extend and refine our research.

Antenna Motion. In our experiments, the antenna is pro-

grammed to scan tags at 50 static aperture points along a linear tra-

jectory, which introduces frequent acceleration or deceleration and

causes continual antenna vibration. Hence, the antenna is designed

to spends 2 seconds interrogating tags at each point per frequency

to collect enough data. We use the average phase measurement to

represent the phase value at the corresponding aperture points for

weakening the impact of the vibration. This approach significantly

increases the consumed time in the experiments.

Environmental Dependence. FaHo currently requires a vali-

dation set for selecting the size of the kernel region and determine

the CNN model, which increases its deployment difficulty. More-

over, the final model may suffer accuracy degradation confronting

environmental changes. To tackle this problem, we plan to design

a component to automatically adjust kernel size before we gen-

erate joint holograms. As shown in Figure 4(b), the theoretical

unwrapped phase values received at aperture points are parabola-

like. If there are strong multipath effects, the phase offsets will

introduce large deviations to this parabola-like pattern. Thus, we

can use this feature to measure the multipath effects ( a simple way

is to do curve-fitting on the unwrapped raw phases and calculate

the deviation between the fitted and raw phases). According to the

previous analysis that larger kernel region is more suitable for a

multipath-low environment described in Section 3.2, we can ad-

just the size of kernel region in a limited range by the calculated

deviation.

8 RELATEDWORK
In this section, we make a review for existing state-of-the-art RFID

localization works, which can be classified into two categories.

RSSI-based Schemes. Early works adopted the received signal
strength indicator (RSSI) which is an indication of the signal power

level. LANDMARC [20] utilizes the concept of reference tags to

improve the overall accuracy of localization for RFID tags whereas

OTrack [26] establishes a probabilistic model for recognizing the

transient critical region and proposes a specific protocol to monitor

the order of tags. Frogeye [39] tackles the issue caused by the weak

stability of strength via the Mixture of Gaussian Model.

Phase-based Schemes. In recent years, there is a growing

interest in utilizing phase profiles of received signals for estimating

the precise location of RFID tags. The reason is that compared

to RSSI, phase is more sensitive to the distance changes and has

higher precision. Pioneer works [21, 34, 35] have utilized the phase

difference collected at several measuring points to estimate the

angle of arrival (AoA) for the received signal. Similar as AoA based

approaches, geometry-based localization techniques [15, 16, 33]

and proximity-based methods [34] were also proposed.

Later fine-grained researches [19, 22, 24, 25, 34, 38] applied SAR

for localization. By utilizing the relative motion between RFID

antenna and tags, we could simulate multiple virtual antennas to

extract more spatial information of RFID tags. Former original

works [24, 38] constructed different holographies, which reveal

the likelihoods of all possible locations where the target tag may

be at, to locate RFID tags and achieve high precision. Tagoram

[38] introduces an advanced hologram DAH by considering the

impact of thermal noise. MobiTagbot [24] further proposes a more

robust holography by leveraging multiple channels. Our work is

inspired by above holography imaging based localization schemes

but advanced in two ways. We design a more robust hologram to

suppress the influences of environmental interferences and propose

an innovative position estimation method for accurate position

prediction based on the generated hologram. Different from RFind

[18] which leverages the underlying physical properties to emulate

a large bandwidth and uses it for accurate localization, FaHo could

also work on single frequency mode and achieve good performance.

Furthermore, there are also lots of valuable RFID based tracking

works [4, 9, 10, 28, 32] recently. Pantomime [28] recognizes the

user’s gestures by replacing the conventional multiple antennas

single tag tracking framework with an equivalent multiple tags

single antenna system. OmniTrack [9] proposes an orientation-

aware localizationmodel to explicitly quantify the respective impact

of the read-tag distance and the orientation of tag.

9 CONCLUSION
In this paper, we presented a fine-grained RFID-based localization

system, which a fusion approach of the holographic technique and

machine learning algorithm. FaHo utilizes a robust self-designed

hologram and an effective position estimate method to suppress

multipath-rich effects and achieve high positioning accuracy. We

implemented the prototype of FaHo and conducted extensive exper-

iments for its performance evaluations. The experimental results

showed that FaHo can achieve good positioning accuracy with

strong robustness (cm-level accuracies in both the lateral and radial

directions). Furthermore, our approach proves that holographic

method is a highly effective for RFID-based indoor localization. Fur-

thermore, our approach proves that holographic method is highly

effective for RFID-based indoor localization.
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